/export/starexec/sandbox2/solver/bin/starexec_run_c_complexity /export/starexec/sandbox2/benchmark/theBenchmark.c /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/output/output_files/bench.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 84 ms] (2) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval_speed_popl10_simple_single_start(v_n, v_x.0) -> Com_1(eval_speed_popl10_simple_single_bb0_in(v_n, v_x.0)) :|: TRUE eval_speed_popl10_simple_single_bb0_in(v_n, v_x.0) -> Com_1(eval_speed_popl10_simple_single_bb1_in(v_n, 0)) :|: TRUE eval_speed_popl10_simple_single_bb1_in(v_n, v_x.0) -> Com_1(eval_speed_popl10_simple_single_bb2_in(v_n, v_x.0)) :|: v_x.0 < v_n eval_speed_popl10_simple_single_bb1_in(v_n, v_x.0) -> Com_1(eval_speed_popl10_simple_single_bb3_in(v_n, v_x.0)) :|: v_x.0 >= v_n eval_speed_popl10_simple_single_bb2_in(v_n, v_x.0) -> Com_1(eval_speed_popl10_simple_single_0(v_n, v_x.0)) :|: TRUE eval_speed_popl10_simple_single_0(v_n, v_x.0) -> Com_2(eval_nondet_start(v_n, v_x.0), eval_speed_popl10_simple_single_1(v_n, v_x.0)) :|: TRUE eval_speed_popl10_simple_single_1(v_n, v_x.0) -> Com_1(eval_speed_popl10_simple_single_bb1_in(v_n, v_x.0 + 1)) :|: TRUE eval_speed_popl10_simple_single_bb3_in(v_n, v_x.0) -> Com_1(eval_speed_popl10_simple_single_stop(v_n, v_x.0)) :|: TRUE The start-symbols are:[eval_speed_popl10_simple_single_start_2] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 16*Ar_1 + 6) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalspeedpopl10simplesinglestart(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb0in(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalspeedpopl10simplesinglebb0in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb1in(0, Ar_1)) (Comp: ?, Cost: 1) evalspeedpopl10simplesinglebb1in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesinglebb1in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb3in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesinglebb2in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesingle0(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalspeedpopl10simplesingle0(Ar_0, Ar_1) -> Com_2(evalnondetstart(Ar_0, Ar_1), evalspeedpopl10simplesingle1(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalspeedpopl10simplesingle1(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb1in(Ar_0 + 1, Ar_1)) (Comp: ?, Cost: 1) evalspeedpopl10simplesinglebb3in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglestop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglestart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalspeedpopl10simplesinglestart(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb0in(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalspeedpopl10simplesinglebb0in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb1in(0, Ar_1)) (Comp: ?, Cost: 1) evalspeedpopl10simplesinglebb1in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesinglebb1in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb3in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesinglebb2in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesingle0(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalspeedpopl10simplesingle0(Ar_0, Ar_1) -> Com_2(evalnondetstart(Ar_0, Ar_1), evalspeedpopl10simplesingle1(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalspeedpopl10simplesingle1(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb1in(Ar_0 + 1, Ar_1)) (Comp: ?, Cost: 1) evalspeedpopl10simplesinglebb3in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglestop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglestart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalspeedpopl10simplesinglestart) = 2 Pol(evalspeedpopl10simplesinglebb0in) = 2 Pol(evalspeedpopl10simplesinglebb1in) = 2 Pol(evalspeedpopl10simplesinglebb2in) = 2 Pol(evalspeedpopl10simplesinglebb3in) = 1 Pol(evalspeedpopl10simplesingle0) = 2 Pol(evalnondetstart) = 0 Pol(evalspeedpopl10simplesingle1) = 2 Pol(evalspeedpopl10simplesinglestop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalspeedpopl10simplesinglebb3in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglestop(Ar_0, Ar_1)) evalspeedpopl10simplesinglebb1in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb3in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalspeedpopl10simplesinglestart(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb0in(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalspeedpopl10simplesinglebb0in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb1in(0, Ar_1)) (Comp: ?, Cost: 1) evalspeedpopl10simplesinglebb1in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: 2, Cost: 1) evalspeedpopl10simplesinglebb1in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb3in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesinglebb2in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesingle0(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalspeedpopl10simplesingle0(Ar_0, Ar_1) -> Com_2(evalnondetstart(Ar_0, Ar_1), evalspeedpopl10simplesingle1(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalspeedpopl10simplesingle1(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb1in(Ar_0 + 1, Ar_1)) (Comp: 2, Cost: 1) evalspeedpopl10simplesinglebb3in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglestop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglestart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 3 to obtain the following invariants: For symbol evalspeedpopl10simplesingle0: X_2 - 1 >= 0 /\ X_1 + X_2 - 1 >= 0 /\ -X_1 + X_2 - 1 >= 0 /\ X_1 >= 0 For symbol evalspeedpopl10simplesingle1: X_2 - 1 >= 0 /\ X_1 + X_2 - 1 >= 0 /\ -X_1 + X_2 - 1 >= 0 /\ X_1 >= 0 For symbol evalspeedpopl10simplesinglebb1in: X_1 >= 0 For symbol evalspeedpopl10simplesinglebb2in: X_2 - 1 >= 0 /\ X_1 + X_2 - 1 >= 0 /\ -X_1 + X_2 - 1 >= 0 /\ X_1 >= 0 For symbol evalspeedpopl10simplesinglebb3in: X_1 - X_2 >= 0 /\ X_1 >= 0 This yielded the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglestart(Ar_0, Ar_1)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalspeedpopl10simplesinglebb3in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglestop(Ar_0, Ar_1)) [ Ar_0 - Ar_1 >= 0 /\ Ar_0 >= 0 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle1(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb1in(Ar_0 + 1, Ar_1)) [ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle0(Ar_0, Ar_1) -> Com_2(evalnondetstart(Ar_0, Ar_1), evalspeedpopl10simplesingle1(Ar_0, Ar_1)) [ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesinglebb2in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesingle0(Ar_0, Ar_1)) [ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 ] (Comp: 2, Cost: 1) evalspeedpopl10simplesinglebb1in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb3in(Ar_0, Ar_1)) [ Ar_0 >= 0 /\ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesinglebb1in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb2in(Ar_0, Ar_1)) [ Ar_0 >= 0 /\ Ar_1 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) evalspeedpopl10simplesinglebb0in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb1in(0, Ar_1)) (Comp: 1, Cost: 1) evalspeedpopl10simplesinglestart(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb0in(Ar_0, Ar_1)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = 4*V_2 Pol(evalspeedpopl10simplesinglestart) = 4*V_2 Pol(evalspeedpopl10simplesinglebb3in) = -4*V_1 + 4*V_2 Pol(evalspeedpopl10simplesinglestop) = -4*V_1 + 4*V_2 Pol(evalspeedpopl10simplesingle1) = -4*V_1 + 4*V_2 - 3 Pol(evalspeedpopl10simplesinglebb1in) = -4*V_1 + 4*V_2 Pol(evalspeedpopl10simplesingle0) = -4*V_1 + 4*V_2 - 2 Pol(evalnondetstart) = -4*V_1 Pol(evalspeedpopl10simplesinglebb2in) = -4*V_1 + 4*V_2 - 1 Pol(evalspeedpopl10simplesinglebb0in) = 4*V_2 orients all transitions weakly and the transitions evalspeedpopl10simplesinglebb2in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesingle0(Ar_0, Ar_1)) [ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 ] evalspeedpopl10simplesinglebb1in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb2in(Ar_0, Ar_1)) [ Ar_0 >= 0 /\ Ar_1 >= Ar_0 + 1 ] evalspeedpopl10simplesingle1(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb1in(Ar_0 + 1, Ar_1)) [ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 ] evalspeedpopl10simplesingle0(Ar_0, Ar_1) -> Com_2(evalnondetstart(Ar_0, Ar_1), evalspeedpopl10simplesingle1(Ar_0, Ar_1)) [ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 ] strictly and produces the following problem: 5: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglestart(Ar_0, Ar_1)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalspeedpopl10simplesinglebb3in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglestop(Ar_0, Ar_1)) [ Ar_0 - Ar_1 >= 0 /\ Ar_0 >= 0 ] (Comp: 4*Ar_1, Cost: 1) evalspeedpopl10simplesingle1(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb1in(Ar_0 + 1, Ar_1)) [ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 ] (Comp: 4*Ar_1, Cost: 1) evalspeedpopl10simplesingle0(Ar_0, Ar_1) -> Com_2(evalnondetstart(Ar_0, Ar_1), evalspeedpopl10simplesingle1(Ar_0, Ar_1)) [ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 ] (Comp: 4*Ar_1, Cost: 1) evalspeedpopl10simplesinglebb2in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesingle0(Ar_0, Ar_1)) [ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 ] (Comp: 2, Cost: 1) evalspeedpopl10simplesinglebb1in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb3in(Ar_0, Ar_1)) [ Ar_0 >= 0 /\ Ar_0 >= Ar_1 ] (Comp: 4*Ar_1, Cost: 1) evalspeedpopl10simplesinglebb1in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb2in(Ar_0, Ar_1)) [ Ar_0 >= 0 /\ Ar_1 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) evalspeedpopl10simplesinglebb0in(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb1in(0, Ar_1)) (Comp: 1, Cost: 1) evalspeedpopl10simplesinglestart(Ar_0, Ar_1) -> Com_1(evalspeedpopl10simplesinglebb0in(Ar_0, Ar_1)) start location: koat_start leaf cost: 0 Complexity upper bound 16*Ar_1 + 6 Time: 0.101 sec (SMT: 0.083 sec) ---------------------------------------- (2) BOUNDS(1, n^1)