/export/starexec/sandbox/solver/bin/starexec_run_c_complexity /export/starexec/sandbox/benchmark/theBenchmark.c /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/output/output_files/bench.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 87 ms] (2) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval_speed_popl10_simple_single_2_start(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_single_2_bb0_in(v_m, v_n, v_x.0, v_y.0)) :|: TRUE eval_speed_popl10_simple_single_2_bb0_in(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_single_2_bb1_in(v_m, v_n, 0, 0)) :|: TRUE eval_speed_popl10_simple_single_2_bb1_in(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_single_2_bb2_in(v_m, v_n, v_x.0, v_y.0)) :|: v_x.0 < v_n eval_speed_popl10_simple_single_2_bb1_in(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_single_2_bb3_in(v_m, v_n, v_x.0, v_y.0)) :|: v_x.0 >= v_n eval_speed_popl10_simple_single_2_bb2_in(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_single_2_bb1_in(v_m, v_n, v_x.0 + 1, v_y.0 + 1)) :|: TRUE eval_speed_popl10_simple_single_2_bb3_in(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_single_2_bb4_in(v_m, v_n, v_x.0, v_y.0)) :|: v_y.0 < v_m eval_speed_popl10_simple_single_2_bb3_in(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_single_2_bb5_in(v_m, v_n, v_x.0, v_y.0)) :|: v_y.0 >= v_m eval_speed_popl10_simple_single_2_bb4_in(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_single_2_bb1_in(v_m, v_n, v_x.0 + 1, v_y.0 + 1)) :|: TRUE eval_speed_popl10_simple_single_2_bb5_in(v_m, v_n, v_x.0, v_y.0) -> Com_1(eval_speed_popl10_simple_single_2_stop(v_m, v_n, v_x.0, v_y.0)) :|: TRUE The start-symbols are:[eval_speed_popl10_simple_single_2_start_4] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 3*Ar_2 + 3*Ar_3 + 10) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(0, 0, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_2 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(Ar_0 + 1, Ar_1 + 1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(Ar_0 + 1, Ar_1 + 1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2stop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalspeedpopl10simplesingle2start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedpopl10simplesingle2bb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(0, 0, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_2 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(Ar_0 + 1, Ar_1 + 1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(Ar_0 + 1, Ar_1 + 1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2stop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalspeedpopl10simplesingle2start) = 2 Pol(evalspeedpopl10simplesingle2bb0in) = 2 Pol(evalspeedpopl10simplesingle2bb1in) = 2 Pol(evalspeedpopl10simplesingle2bb2in) = 2 Pol(evalspeedpopl10simplesingle2bb3in) = 2 Pol(evalspeedpopl10simplesingle2bb4in) = 2 Pol(evalspeedpopl10simplesingle2bb5in) = 1 Pol(evalspeedpopl10simplesingle2stop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalspeedpopl10simplesingle2bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2stop(Ar_0, Ar_1, Ar_2, Ar_3)) evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalspeedpopl10simplesingle2start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedpopl10simplesingle2bb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(0, 0, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_2 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(Ar_0 + 1, Ar_1 + 1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 + 1 ] (Comp: 2, Cost: 1) evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(Ar_0 + 1, Ar_1 + 1, Ar_2, Ar_3)) (Comp: 2, Cost: 1) evalspeedpopl10simplesingle2bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2stop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalspeedpopl10simplesingle2start) = V_3 Pol(evalspeedpopl10simplesingle2bb0in) = V_3 Pol(evalspeedpopl10simplesingle2bb1in) = -V_1 + V_3 Pol(evalspeedpopl10simplesingle2bb2in) = -V_1 + V_3 - 1 Pol(evalspeedpopl10simplesingle2bb3in) = -V_1 + V_3 Pol(evalspeedpopl10simplesingle2bb4in) = -V_1 + V_3 Pol(evalspeedpopl10simplesingle2bb5in) = -V_1 + V_3 Pol(evalspeedpopl10simplesingle2stop) = -V_1 + V_3 Pol(koat_start) = V_3 orients all transitions weakly and the transition evalspeedpopl10simplesingle2bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) evalspeedpopl10simplesingle2start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedpopl10simplesingle2bb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(0, 0, Ar_2, Ar_3)) (Comp: Ar_2, Cost: 1) evalspeedpopl10simplesingle2bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_2 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(Ar_0 + 1, Ar_1 + 1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 + 1 ] (Comp: 2, Cost: 1) evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(Ar_0 + 1, Ar_1 + 1, Ar_2, Ar_3)) (Comp: 2, Cost: 1) evalspeedpopl10simplesingle2bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2stop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 4 produces the following problem: 5: T: (Comp: 1, Cost: 1) evalspeedpopl10simplesingle2start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedpopl10simplesingle2bb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(0, 0, Ar_2, Ar_3)) (Comp: Ar_2, Cost: 1) evalspeedpopl10simplesingle2bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_2 ] (Comp: Ar_2, Cost: 1) evalspeedpopl10simplesingle2bb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(Ar_0 + 1, Ar_1 + 1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 + 1 ] (Comp: 2, Cost: 1) evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(Ar_0 + 1, Ar_1 + 1, Ar_2, Ar_3)) (Comp: 2, Cost: 1) evalspeedpopl10simplesingle2bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2stop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalspeedpopl10simplesingle2start) = V_4 + 1 Pol(evalspeedpopl10simplesingle2bb0in) = V_4 + 1 Pol(evalspeedpopl10simplesingle2bb1in) = -V_2 + V_4 + 1 Pol(evalspeedpopl10simplesingle2bb2in) = -V_2 + V_4 Pol(evalspeedpopl10simplesingle2bb3in) = -V_2 + V_4 + 1 Pol(evalspeedpopl10simplesingle2bb4in) = -V_2 + V_4 Pol(evalspeedpopl10simplesingle2bb5in) = -V_2 + V_4 Pol(evalspeedpopl10simplesingle2stop) = -V_2 + V_4 Pol(koat_start) = V_4 + 1 orients all transitions weakly and the transition evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 + 1 ] strictly and produces the following problem: 6: T: (Comp: 1, Cost: 1) evalspeedpopl10simplesingle2start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedpopl10simplesingle2bb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(0, 0, Ar_2, Ar_3)) (Comp: Ar_2, Cost: 1) evalspeedpopl10simplesingle2bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_2 ] (Comp: Ar_2, Cost: 1) evalspeedpopl10simplesingle2bb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(Ar_0 + 1, Ar_1 + 1, Ar_2, Ar_3)) (Comp: Ar_3 + 1, Cost: 1) evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 + 1 ] (Comp: 2, Cost: 1) evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 ] (Comp: ?, Cost: 1) evalspeedpopl10simplesingle2bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(Ar_0 + 1, Ar_1 + 1, Ar_2, Ar_3)) (Comp: 2, Cost: 1) evalspeedpopl10simplesingle2bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2stop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 6 produces the following problem: 7: T: (Comp: 1, Cost: 1) evalspeedpopl10simplesingle2start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedpopl10simplesingle2bb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(0, 0, Ar_2, Ar_3)) (Comp: Ar_2, Cost: 1) evalspeedpopl10simplesingle2bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: Ar_3 + Ar_2 + 2, Cost: 1) evalspeedpopl10simplesingle2bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_2 ] (Comp: Ar_2, Cost: 1) evalspeedpopl10simplesingle2bb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(Ar_0 + 1, Ar_1 + 1, Ar_2, Ar_3)) (Comp: Ar_3 + 1, Cost: 1) evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 + 1 ] (Comp: 2, Cost: 1) evalspeedpopl10simplesingle2bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 ] (Comp: Ar_3 + 1, Cost: 1) evalspeedpopl10simplesingle2bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2bb1in(Ar_0 + 1, Ar_1 + 1, Ar_2, Ar_3)) (Comp: 2, Cost: 1) evalspeedpopl10simplesingle2bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2stop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedpopl10simplesingle2start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 3*Ar_2 + 3*Ar_3 + 10 Time: 0.085 sec (SMT: 0.068 sec) ---------------------------------------- (2) BOUNDS(1, n^1)