/export/starexec/sandbox2/solver/bin/starexec_run_c_complexity /export/starexec/sandbox2/benchmark/theBenchmark.c /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(1)) proof of /export/starexec/sandbox2/output/output_files/bench.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 87 ms] (2) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval_foo_start(v_.0, v_.01, v_.1, v_i, v_j) -> Com_1(eval_foo_bb0_in(v_.0, v_.01, v_.1, v_i, v_j)) :|: TRUE eval_foo_bb0_in(v_.0, v_.01, v_.1, v_i, v_j) -> Com_1(eval_foo_bb1_in(0, 3, v_.1, v_i, v_j)) :|: TRUE eval_foo_bb1_in(v_.0, v_.01, v_.1, v_i, v_j) -> Com_1(eval_foo_bb2_in(v_.0, v_.01, v_.01, v_i, v_j)) :|: v_.0 < 10 eval_foo_bb1_in(v_.0, v_.01, v_.1, v_i, v_j) -> Com_1(eval_foo_bb5_in(v_.0, v_.01, v_.1, v_i, v_j)) :|: v_.0 >= 10 eval_foo_bb2_in(v_.0, v_.01, v_.1, v_i, v_j) -> Com_1(eval_foo_bb3_in(v_.0, v_.01, v_.1, v_i, v_j)) :|: v_.1 < 12 eval_foo_bb2_in(v_.0, v_.01, v_.1, v_i, v_j) -> Com_1(eval_foo_bb4_in(v_.0, v_.01, v_.1, v_i, v_j)) :|: v_.1 >= 12 eval_foo_bb3_in(v_.0, v_.01, v_.1, v_i, v_j) -> Com_1(eval_foo_bb2_in(v_.0, v_.01, v_.1 + 1, v_i, v_j)) :|: TRUE eval_foo_bb4_in(v_.0, v_.01, v_.1, v_i, v_j) -> Com_1(eval_foo_bb1_in(v_.0 + 1, v_.1, v_.1, v_i, v_j)) :|: TRUE eval_foo_bb5_in(v_.0, v_.01, v_.1, v_i, v_j) -> Com_1(eval_foo_stop(v_.0, v_.01, v_.1, v_i, v_j)) :|: TRUE The start-symbols are:[eval_foo_start_5] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 74) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalfoostart(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb0in(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalfoobb0in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(0, 3, Ar_2)) (Comp: ?, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_1)) [ 9 >= Ar_0 ] (Comp: ?, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb5in(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 10 ] (Comp: ?, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2)) [ 11 >= Ar_2 ] (Comp: ?, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 12 ] (Comp: ?, Cost: 1) evalfoobb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: ?, Cost: 1) evalfoobb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(Ar_0 + 1, Ar_2, Ar_2)) (Comp: ?, Cost: 1) evalfoobb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalfoostart(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb0in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalfoobb0in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(0, 3, Ar_2)) (Comp: ?, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_1)) [ 9 >= Ar_0 ] (Comp: ?, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb5in(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 10 ] (Comp: ?, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2)) [ 11 >= Ar_2 ] (Comp: ?, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 12 ] (Comp: ?, Cost: 1) evalfoobb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: ?, Cost: 1) evalfoobb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(Ar_0 + 1, Ar_2, Ar_2)) (Comp: ?, Cost: 1) evalfoobb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalfoostart) = 2 Pol(evalfoobb0in) = 2 Pol(evalfoobb1in) = 2 Pol(evalfoobb2in) = 2 Pol(evalfoobb5in) = 1 Pol(evalfoobb3in) = 2 Pol(evalfoobb4in) = 2 Pol(evalfoostop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalfoobb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostop(Ar_0, Ar_1, Ar_2)) evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb5in(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 10 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalfoostart(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb0in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalfoobb0in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(0, 3, Ar_2)) (Comp: ?, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_1)) [ 9 >= Ar_0 ] (Comp: 2, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb5in(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 10 ] (Comp: ?, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2)) [ 11 >= Ar_2 ] (Comp: ?, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 12 ] (Comp: ?, Cost: 1) evalfoobb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: ?, Cost: 1) evalfoobb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(Ar_0 + 1, Ar_2, Ar_2)) (Comp: 2, Cost: 1) evalfoobb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalfoostart) = 10 Pol(evalfoobb0in) = 10 Pol(evalfoobb1in) = -V_1 + 10 Pol(evalfoobb2in) = -V_1 + 9 Pol(evalfoobb5in) = -V_1 Pol(evalfoobb3in) = -V_1 + 9 Pol(evalfoobb4in) = -V_1 + 9 Pol(evalfoostop) = -V_1 Pol(koat_start) = 10 orients all transitions weakly and the transition evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_1)) [ 9 >= Ar_0 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) evalfoostart(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb0in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalfoobb0in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(0, 3, Ar_2)) (Comp: 10, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_1)) [ 9 >= Ar_0 ] (Comp: 2, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb5in(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 10 ] (Comp: ?, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2)) [ 11 >= Ar_2 ] (Comp: ?, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 12 ] (Comp: ?, Cost: 1) evalfoobb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: ?, Cost: 1) evalfoobb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(Ar_0 + 1, Ar_2, Ar_2)) (Comp: 2, Cost: 1) evalfoobb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalfoobb4in) = 1 Pol(evalfoobb1in) = 0 Pol(evalfoobb3in) = 2 Pol(evalfoobb2in) = 2 and size complexities S("koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ]", 0-1) = Ar_1 S("koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ]", 0-2) = Ar_2 S("evalfoobb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostop(Ar_0, Ar_1, Ar_2))", 0-0) = ? S("evalfoobb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostop(Ar_0, Ar_1, Ar_2))", 0-1) = ? S("evalfoobb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostop(Ar_0, Ar_1, Ar_2))", 0-2) = ? S("evalfoobb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(Ar_0 + 1, Ar_2, Ar_2))", 0-0) = ? S("evalfoobb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(Ar_0 + 1, Ar_2, Ar_2))", 0-1) = ? S("evalfoobb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(Ar_0 + 1, Ar_2, Ar_2))", 0-2) = ? S("evalfoobb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_2 + 1))", 0-0) = ? S("evalfoobb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_2 + 1))", 0-1) = ? S("evalfoobb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_2 + 1))", 0-2) = ? S("evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 12 ]", 0-0) = ? S("evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 12 ]", 0-1) = ? S("evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 12 ]", 0-2) = ? S("evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2)) [ 11 >= Ar_2 ]", 0-0) = ? S("evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2)) [ 11 >= Ar_2 ]", 0-1) = ? S("evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2)) [ 11 >= Ar_2 ]", 0-2) = ? S("evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb5in(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 10 ]", 0-0) = ? S("evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb5in(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 10 ]", 0-1) = ? S("evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb5in(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 10 ]", 0-2) = ? S("evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_1)) [ 9 >= Ar_0 ]", 0-0) = ? S("evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_1)) [ 9 >= Ar_0 ]", 0-1) = ? S("evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_1)) [ 9 >= Ar_0 ]", 0-2) = ? S("evalfoobb0in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(0, 3, Ar_2))", 0-0) = 0 S("evalfoobb0in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(0, 3, Ar_2))", 0-1) = 3 S("evalfoobb0in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(0, 3, Ar_2))", 0-2) = Ar_2 S("evalfoostart(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb0in(Ar_0, Ar_1, Ar_2))", 0-0) = Ar_0 S("evalfoostart(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb0in(Ar_0, Ar_1, Ar_2))", 0-1) = Ar_1 S("evalfoostart(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb0in(Ar_0, Ar_1, Ar_2))", 0-2) = Ar_2 orients the transitions evalfoobb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(Ar_0 + 1, Ar_2, Ar_2)) evalfoobb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_2 + 1)) evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 12 ] evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2)) [ 11 >= Ar_2 ] weakly and the transitions evalfoobb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(Ar_0 + 1, Ar_2, Ar_2)) evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 12 ] strictly and produces the following problem: 5: T: (Comp: 1, Cost: 1) evalfoostart(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb0in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalfoobb0in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(0, 3, Ar_2)) (Comp: 10, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_1)) [ 9 >= Ar_0 ] (Comp: 2, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb5in(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 10 ] (Comp: ?, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2)) [ 11 >= Ar_2 ] (Comp: 20, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 12 ] (Comp: ?, Cost: 1) evalfoobb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: 20, Cost: 1) evalfoobb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(Ar_0 + 1, Ar_2, Ar_2)) (Comp: 2, Cost: 1) evalfoobb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalfoostart) = 9 Pol(evalfoobb0in) = 9 Pol(evalfoobb1in) = -V_2 + 12 Pol(evalfoobb2in) = -V_3 + 12 Pol(evalfoobb5in) = -V_2 Pol(evalfoobb3in) = -V_3 + 11 Pol(evalfoobb4in) = -V_3 + 12 Pol(evalfoostop) = -V_2 Pol(koat_start) = 9 orients all transitions weakly and the transition evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2)) [ 11 >= Ar_2 ] strictly and produces the following problem: 6: T: (Comp: 1, Cost: 1) evalfoostart(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb0in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalfoobb0in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(0, 3, Ar_2)) (Comp: 10, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_1)) [ 9 >= Ar_0 ] (Comp: 2, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb5in(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 10 ] (Comp: 9, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2)) [ 11 >= Ar_2 ] (Comp: 20, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 12 ] (Comp: ?, Cost: 1) evalfoobb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: 20, Cost: 1) evalfoobb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(Ar_0 + 1, Ar_2, Ar_2)) (Comp: 2, Cost: 1) evalfoobb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 6 produces the following problem: 7: T: (Comp: 1, Cost: 1) evalfoostart(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb0in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalfoobb0in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(0, 3, Ar_2)) (Comp: 10, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_1)) [ 9 >= Ar_0 ] (Comp: 2, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb5in(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 10 ] (Comp: 9, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2)) [ 11 >= Ar_2 ] (Comp: 20, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 12 ] (Comp: 9, Cost: 1) evalfoobb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: 20, Cost: 1) evalfoobb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoobb1in(Ar_0 + 1, Ar_2, Ar_2)) (Comp: 2, Cost: 1) evalfoobb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalfoostart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 74 Time: 0.067 sec (SMT: 0.053 sec) ---------------------------------------- (2) BOUNDS(1, 1)