/export/starexec/sandbox2/solver/bin/starexec_run_c_complexity /export/starexec/sandbox2/benchmark/theBenchmark.c /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/output/output_files/bench.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 84 ms] (2) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval_foo_start(v_.0, v_.01, v_x, v_y, v_z) -> Com_1(eval_foo_bb0_in(v_.0, v_.01, v_x, v_y, v_z)) :|: TRUE eval_foo_bb0_in(v_.0, v_.01, v_x, v_y, v_z) -> Com_1(eval_foo_bb1_in(v_x, v_y, v_x, v_y, v_z)) :|: TRUE eval_foo_bb1_in(v_.0, v_.01, v_x, v_y, v_z) -> Com_1(eval_foo_bb2_in(v_.0, v_.01, v_x, v_y, v_z)) :|: v_.0 > v_z && v_.01 > v_z eval_foo_bb1_in(v_.0, v_.01, v_x, v_y, v_z) -> Com_1(eval_foo_bb3_in(v_.0, v_.01, v_x, v_y, v_z)) :|: v_.0 <= v_z eval_foo_bb1_in(v_.0, v_.01, v_x, v_y, v_z) -> Com_1(eval_foo_bb3_in(v_.0, v_.01, v_x, v_y, v_z)) :|: v_.01 <= v_z eval_foo_bb2_in(v_.0, v_.01, v_x, v_y, v_z) -> Com_1(eval_foo_bb1_in(v_.0 - 1, v_.01 - 1, v_x, v_y, v_z)) :|: TRUE eval_foo_bb3_in(v_.0, v_.01, v_x, v_y, v_z) -> Com_1(eval_foo_stop(v_.0, v_.01, v_x, v_y, v_z)) :|: TRUE The start-symbols are:[eval_foo_start_5] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 2*Ar_1 + 2*Ar_4 + 10) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalfoostart(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb0in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) (Comp: ?, Cost: 1) evalfoobb0in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb1in(Ar_1, Ar_1, Ar_3, Ar_3, Ar_4)) (Comp: ?, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_4 + 1 /\ Ar_2 >= Ar_4 + 1 ] (Comp: ?, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_4 >= Ar_0 ] (Comp: ?, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_4 >= Ar_2 ] (Comp: ?, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb1in(Ar_0 - 1, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) (Comp: ?, Cost: 1) evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoostop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoostart(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalfoostart(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb0in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) (Comp: 1, Cost: 1) evalfoobb0in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb1in(Ar_1, Ar_1, Ar_3, Ar_3, Ar_4)) (Comp: ?, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_4 + 1 /\ Ar_2 >= Ar_4 + 1 ] (Comp: ?, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_4 >= Ar_0 ] (Comp: ?, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_4 >= Ar_2 ] (Comp: ?, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb1in(Ar_0 - 1, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) (Comp: ?, Cost: 1) evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoostop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoostart(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalfoostart) = 2 Pol(evalfoobb0in) = 2 Pol(evalfoobb1in) = 2 Pol(evalfoobb2in) = 2 Pol(evalfoobb3in) = 1 Pol(evalfoostop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoostop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_4 >= Ar_2 ] evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_4 >= Ar_0 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalfoostart(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb0in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) (Comp: 1, Cost: 1) evalfoobb0in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb1in(Ar_1, Ar_1, Ar_3, Ar_3, Ar_4)) (Comp: ?, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_4 + 1 /\ Ar_2 >= Ar_4 + 1 ] (Comp: 2, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_4 >= Ar_0 ] (Comp: 2, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_4 >= Ar_2 ] (Comp: ?, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb1in(Ar_0 - 1, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) (Comp: 2, Cost: 1) evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoostop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoostart(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalfoostart) = V_2 - V_5 + 1 Pol(evalfoobb0in) = V_2 - V_5 + 1 Pol(evalfoobb1in) = V_1 - V_5 + 1 Pol(evalfoobb2in) = V_1 - V_5 Pol(evalfoobb3in) = V_1 - V_5 Pol(evalfoostop) = V_1 - V_5 Pol(koat_start) = V_2 - V_5 + 1 orients all transitions weakly and the transition evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_4 + 1 /\ Ar_2 >= Ar_4 + 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) evalfoostart(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb0in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) (Comp: 1, Cost: 1) evalfoobb0in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb1in(Ar_1, Ar_1, Ar_3, Ar_3, Ar_4)) (Comp: Ar_1 + Ar_4 + 1, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_4 + 1 /\ Ar_2 >= Ar_4 + 1 ] (Comp: 2, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_4 >= Ar_0 ] (Comp: 2, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_4 >= Ar_2 ] (Comp: ?, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb1in(Ar_0 - 1, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) (Comp: 2, Cost: 1) evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoostop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoostart(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 4 produces the following problem: 5: T: (Comp: 1, Cost: 1) evalfoostart(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb0in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) (Comp: 1, Cost: 1) evalfoobb0in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb1in(Ar_1, Ar_1, Ar_3, Ar_3, Ar_4)) (Comp: Ar_1 + Ar_4 + 1, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb2in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_4 + 1 /\ Ar_2 >= Ar_4 + 1 ] (Comp: 2, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_4 >= Ar_0 ] (Comp: 2, Cost: 1) evalfoobb1in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ Ar_4 >= Ar_2 ] (Comp: Ar_1 + Ar_4 + 1, Cost: 1) evalfoobb2in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoobb1in(Ar_0 - 1, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) (Comp: 2, Cost: 1) evalfoobb3in(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoostop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(evalfoostart(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 2*Ar_1 + 2*Ar_4 + 10 Time: 0.062 sec (SMT: 0.049 sec) ---------------------------------------- (2) BOUNDS(1, n^1)