/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 334 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 1127 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: evalfstart(A, B, C, D) -> Com_1(evalfentryin(A, B, C, D)) :|: TRUE evalfentryin(A, B, C, D) -> Com_1(evalfbb6in(0, B, C, D)) :|: TRUE evalfbb6in(A, B, C, D) -> Com_1(evalfbbin(A, B, C, D)) :|: B >= A + 1 evalfbb6in(A, B, C, D) -> Com_1(evalfreturnin(A, B, C, D)) :|: A >= B evalfbbin(A, B, C, D) -> Com_1(evalfbb2in(A, B, 0, A + 1)) :|: TRUE evalfbb2in(A, B, C, D) -> Com_1(evalfbb4in(A, B, C, D)) :|: D >= B evalfbb2in(A, B, C, D) -> Com_1(evalfbb3in(A, B, C, D)) :|: B >= D + 1 evalfbb3in(A, B, C, D) -> Com_1(evalfbb1in(A, B, C, D)) :|: 0 >= E + 1 evalfbb3in(A, B, C, D) -> Com_1(evalfbb1in(A, B, C, D)) :|: E >= 1 evalfbb3in(A, B, C, D) -> Com_1(evalfbb4in(A, B, C, D)) :|: TRUE evalfbb1in(A, B, C, D) -> Com_1(evalfbb2in(A, B, C + 1, D + 1)) :|: TRUE evalfbb4in(A, B, C, D) -> Com_1(evalfbb6in(D - 1, B, C, D)) :|: C >= 1 evalfbb4in(A, B, C, D) -> Com_1(evalfbb6in(D, B, C, D)) :|: 0 >= C evalfreturnin(A, B, C, D) -> Com_1(evalfstop(A, B, C, D)) :|: TRUE The start-symbols are:[evalfstart_4] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 80*Ar_1 + 6) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalfstart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfentryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalfentryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb6in(0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalfbbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb2in(Ar_0, Ar_1, 0, Ar_0 + 1)) (Comp: ?, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 ] (Comp: ?, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= E + 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ E >= 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_2 + 1, Ar_3 + 1)) (Comp: ?, Cost: 1) evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb6in(Ar_3 - 1, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb6in(Ar_3, Ar_1, Ar_2, Ar_3)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) evalfreturnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfstop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfstart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalfstart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfentryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalfentryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb6in(0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalfbbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb2in(Ar_0, Ar_1, 0, Ar_0 + 1)) (Comp: ?, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 ] (Comp: ?, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= E + 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ E >= 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_2 + 1, Ar_3 + 1)) (Comp: ?, Cost: 1) evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb6in(Ar_3 - 1, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb6in(Ar_3, Ar_1, Ar_2, Ar_3)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) evalfreturnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfstop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfstart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalfstart) = 2 Pol(evalfentryin) = 2 Pol(evalfbb6in) = 2 Pol(evalfbbin) = 2 Pol(evalfreturnin) = 1 Pol(evalfbb2in) = 2 Pol(evalfbb4in) = 2 Pol(evalfbb3in) = 2 Pol(evalfbb1in) = 2 Pol(evalfstop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalfreturnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfstop(Ar_0, Ar_1, Ar_2, Ar_3)) evalfbb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_1 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalfstart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfentryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalfentryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb6in(0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_0 + 1 ] (Comp: 2, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalfbbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb2in(Ar_0, Ar_1, 0, Ar_0 + 1)) (Comp: ?, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 ] (Comp: ?, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= E + 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ E >= 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_2 + 1, Ar_3 + 1)) (Comp: ?, Cost: 1) evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb6in(Ar_3 - 1, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb6in(Ar_3, Ar_1, Ar_2, Ar_3)) [ 0 >= Ar_2 ] (Comp: 2, Cost: 1) evalfreturnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfstop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfstart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 3 to obtain the following invariants: For symbol evalfbb1in: X_2 - X_4 - 1 >= 0 /\ X_4 - 1 >= 0 /\ X_3 + X_4 - 1 >= 0 /\ -X_3 + X_4 - 1 >= 0 /\ X_2 + X_4 - 3 >= 0 /\ X_1 + X_4 - 1 >= 0 /\ -X_1 + X_4 - 1 >= 0 /\ X_2 - X_3 - 2 >= 0 /\ X_3 >= 0 /\ X_2 + X_3 - 2 >= 0 /\ X_1 + X_3 >= 0 /\ X_2 - 2 >= 0 /\ X_1 + X_2 - 2 >= 0 /\ -X_1 + X_2 - 2 >= 0 /\ X_1 >= 0 For symbol evalfbb2in: X_2 - X_4 >= 0 /\ X_4 - 1 >= 0 /\ X_3 + X_4 - 1 >= 0 /\ -X_3 + X_4 - 1 >= 0 /\ X_2 + X_4 - 2 >= 0 /\ X_1 + X_4 - 1 >= 0 /\ -X_1 + X_4 - 1 >= 0 /\ X_2 - X_3 - 1 >= 0 /\ X_3 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 >= 0 /\ X_2 - 1 >= 0 /\ X_1 + X_2 - 1 >= 0 /\ -X_1 + X_2 - 1 >= 0 /\ X_1 >= 0 For symbol evalfbb3in: X_2 - X_4 - 1 >= 0 /\ X_4 - 1 >= 0 /\ X_3 + X_4 - 1 >= 0 /\ -X_3 + X_4 - 1 >= 0 /\ X_2 + X_4 - 3 >= 0 /\ X_1 + X_4 - 1 >= 0 /\ -X_1 + X_4 - 1 >= 0 /\ X_2 - X_3 - 2 >= 0 /\ X_3 >= 0 /\ X_2 + X_3 - 2 >= 0 /\ X_1 + X_3 >= 0 /\ X_2 - 2 >= 0 /\ X_1 + X_2 - 2 >= 0 /\ -X_1 + X_2 - 2 >= 0 /\ X_1 >= 0 For symbol evalfbb4in: X_2 - X_4 >= 0 /\ X_4 - 1 >= 0 /\ X_3 + X_4 - 1 >= 0 /\ -X_3 + X_4 - 1 >= 0 /\ X_2 + X_4 - 2 >= 0 /\ X_1 + X_4 - 1 >= 0 /\ -X_1 + X_4 - 1 >= 0 /\ X_2 - X_3 - 1 >= 0 /\ X_3 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 >= 0 /\ X_2 - 1 >= 0 /\ X_1 + X_2 - 1 >= 0 /\ -X_1 + X_2 - 1 >= 0 /\ X_1 >= 0 For symbol evalfbb6in: X_1 >= 0 For symbol evalfbbin: X_2 - 1 >= 0 /\ X_1 + X_2 - 1 >= 0 /\ -X_1 + X_2 - 1 >= 0 /\ X_1 >= 0 For symbol evalfreturnin: X_1 - X_2 >= 0 /\ X_1 >= 0 This yielded the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfstart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalfreturnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfstop(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 - Ar_1 >= 0 /\ Ar_0 >= 0 ] (Comp: ?, Cost: 1) evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb6in(Ar_3, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 2 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 /\ 0 >= Ar_2 ] (Comp: ?, Cost: 1) evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb6in(Ar_3 - 1, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 2 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 /\ Ar_2 >= 1 ] (Comp: ?, Cost: 1) evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_2 + 1, Ar_3 + 1)) [ Ar_1 - Ar_3 - 1 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 3 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 2 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 - 2 >= 0 /\ Ar_0 >= 0 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 - 1 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 3 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 2 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 - 2 >= 0 /\ Ar_0 >= 0 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 - 1 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 3 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 2 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 - 2 >= 0 /\ Ar_0 >= 0 /\ E >= 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 - 1 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 3 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 2 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 - 2 >= 0 /\ Ar_0 >= 0 /\ 0 >= E + 1 ] (Comp: ?, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 2 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 /\ Ar_1 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 2 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 /\ Ar_3 >= Ar_1 ] (Comp: ?, Cost: 1) evalfbbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb2in(Ar_0, Ar_1, 0, Ar_0 + 1)) [ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 ] (Comp: 2, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= 0 /\ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= 0 /\ Ar_1 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) evalfentryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb6in(0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalfstart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfentryin(Ar_0, Ar_1, Ar_2, Ar_3)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = 8*V_2 Pol(evalfstart) = 8*V_2 Pol(evalfreturnin) = -8*V_1 + 8*V_2 Pol(evalfstop) = -8*V_1 + 8*V_2 Pol(evalfbb4in) = 8*V_2 + 5*V_3 - 8*V_4 + 4 Pol(evalfbb6in) = -8*V_1 + 8*V_2 Pol(evalfbb1in) = 8*V_2 + 5*V_3 - 8*V_4 + 4 Pol(evalfbb2in) = 8*V_2 + 5*V_3 - 8*V_4 + 6 Pol(evalfbb3in) = 8*V_2 + 5*V_3 - 8*V_4 + 5 Pol(evalfbbin) = -8*V_1 + 8*V_2 - 1 Pol(evalfentryin) = 8*V_2 orients all transitions weakly and the transitions evalfbbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb2in(Ar_0, Ar_1, 0, Ar_0 + 1)) [ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 ] evalfbb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= 0 /\ Ar_1 >= Ar_0 + 1 ] evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb6in(Ar_3, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 2 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 /\ 0 >= Ar_2 ] evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb6in(Ar_3 - 1, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 2 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 /\ Ar_2 >= 1 ] evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 - 1 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 3 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 2 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 - 2 >= 0 /\ Ar_0 >= 0 ] evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 - 1 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 3 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 2 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 - 2 >= 0 /\ Ar_0 >= 0 /\ E >= 1 ] evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 - 1 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 3 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 2 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 - 2 >= 0 /\ Ar_0 >= 0 /\ 0 >= E + 1 ] evalfbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 2 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 /\ Ar_3 >= Ar_1 ] evalfbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 2 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 /\ Ar_1 >= Ar_3 + 1 ] evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_2 + 1, Ar_3 + 1)) [ Ar_1 - Ar_3 - 1 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 3 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 2 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 - 2 >= 0 /\ Ar_0 >= 0 ] strictly and produces the following problem: 5: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfstart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalfreturnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfstop(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 - Ar_1 >= 0 /\ Ar_0 >= 0 ] (Comp: 8*Ar_1, Cost: 1) evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb6in(Ar_3, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 2 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 /\ 0 >= Ar_2 ] (Comp: 8*Ar_1, Cost: 1) evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb6in(Ar_3 - 1, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 2 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 /\ Ar_2 >= 1 ] (Comp: 8*Ar_1, Cost: 1) evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_2 + 1, Ar_3 + 1)) [ Ar_1 - Ar_3 - 1 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 3 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 2 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 - 2 >= 0 /\ Ar_0 >= 0 ] (Comp: 8*Ar_1, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 - 1 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 3 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 2 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 - 2 >= 0 /\ Ar_0 >= 0 ] (Comp: 8*Ar_1, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 - 1 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 3 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 2 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 - 2 >= 0 /\ Ar_0 >= 0 /\ E >= 1 ] (Comp: 8*Ar_1, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 - 1 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 3 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 2 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 - 2 >= 0 /\ Ar_0 >= 0 /\ 0 >= E + 1 ] (Comp: 8*Ar_1, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 2 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 /\ Ar_1 >= Ar_3 + 1 ] (Comp: 8*Ar_1, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_3 >= 0 /\ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 1 >= 0 /\ -Ar_2 + Ar_3 - 1 >= 0 /\ Ar_1 + Ar_3 - 2 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 /\ Ar_3 >= Ar_1 ] (Comp: 8*Ar_1, Cost: 1) evalfbbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb2in(Ar_0, Ar_1, 0, Ar_0 + 1)) [ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 >= 0 ] (Comp: 2, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= 0 /\ Ar_0 >= Ar_1 ] (Comp: 8*Ar_1, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= 0 /\ Ar_1 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) evalfentryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfbb6in(0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalfstart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalfentryin(Ar_0, Ar_1, Ar_2, Ar_3)) start location: koat_start leaf cost: 0 Complexity upper bound 80*Ar_1 + 6 Time: 0.377 sec (SMT: 0.301 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: evalfstart 0: evalfstart -> evalfentryin : [], cost: 1 1: evalfentryin -> evalfbb6in : A'=0, [], cost: 1 2: evalfbb6in -> evalfbbin : [ B>=1+A ], cost: 1 3: evalfbb6in -> evalfreturnin : [ A>=B ], cost: 1 4: evalfbbin -> evalfbb2in : C'=0, D'=1+A, [], cost: 1 5: evalfbb2in -> evalfbb4in : [ D>=B ], cost: 1 6: evalfbb2in -> evalfbb3in : [ B>=1+D ], cost: 1 7: evalfbb3in -> evalfbb1in : [ 0>=1+free ], cost: 1 8: evalfbb3in -> evalfbb1in : [ free_1>=1 ], cost: 1 9: evalfbb3in -> evalfbb4in : [], cost: 1 10: evalfbb1in -> evalfbb2in : C'=1+C, D'=1+D, [], cost: 1 11: evalfbb4in -> evalfbb6in : A'=-1+D, [ C>=1 ], cost: 1 12: evalfbb4in -> evalfbb6in : A'=D, [ 0>=C ], cost: 1 13: evalfreturnin -> evalfstop : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: evalfstart -> evalfentryin : [], cost: 1 Removed unreachable and leaf rules: Start location: evalfstart 0: evalfstart -> evalfentryin : [], cost: 1 1: evalfentryin -> evalfbb6in : A'=0, [], cost: 1 2: evalfbb6in -> evalfbbin : [ B>=1+A ], cost: 1 4: evalfbbin -> evalfbb2in : C'=0, D'=1+A, [], cost: 1 5: evalfbb2in -> evalfbb4in : [ D>=B ], cost: 1 6: evalfbb2in -> evalfbb3in : [ B>=1+D ], cost: 1 7: evalfbb3in -> evalfbb1in : [ 0>=1+free ], cost: 1 8: evalfbb3in -> evalfbb1in : [ free_1>=1 ], cost: 1 9: evalfbb3in -> evalfbb4in : [], cost: 1 10: evalfbb1in -> evalfbb2in : C'=1+C, D'=1+D, [], cost: 1 11: evalfbb4in -> evalfbb6in : A'=-1+D, [ C>=1 ], cost: 1 12: evalfbb4in -> evalfbb6in : A'=D, [ 0>=C ], cost: 1 Simplified all rules, resulting in: Start location: evalfstart 0: evalfstart -> evalfentryin : [], cost: 1 1: evalfentryin -> evalfbb6in : A'=0, [], cost: 1 2: evalfbb6in -> evalfbbin : [ B>=1+A ], cost: 1 4: evalfbbin -> evalfbb2in : C'=0, D'=1+A, [], cost: 1 5: evalfbb2in -> evalfbb4in : [ D>=B ], cost: 1 6: evalfbb2in -> evalfbb3in : [ B>=1+D ], cost: 1 8: evalfbb3in -> evalfbb1in : [], cost: 1 9: evalfbb3in -> evalfbb4in : [], cost: 1 10: evalfbb1in -> evalfbb2in : C'=1+C, D'=1+D, [], cost: 1 11: evalfbb4in -> evalfbb6in : A'=-1+D, [ C>=1 ], cost: 1 12: evalfbb4in -> evalfbb6in : A'=D, [ 0>=C ], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: evalfstart 14: evalfstart -> evalfbb6in : A'=0, [], cost: 2 15: evalfbb6in -> evalfbb2in : C'=0, D'=1+A, [ B>=1+A ], cost: 2 5: evalfbb2in -> evalfbb4in : [ D>=B ], cost: 1 6: evalfbb2in -> evalfbb3in : [ B>=1+D ], cost: 1 9: evalfbb3in -> evalfbb4in : [], cost: 1 16: evalfbb3in -> evalfbb2in : C'=1+C, D'=1+D, [], cost: 2 11: evalfbb4in -> evalfbb6in : A'=-1+D, [ C>=1 ], cost: 1 12: evalfbb4in -> evalfbb6in : A'=D, [ 0>=C ], cost: 1 Eliminated locations (on tree-shaped paths): Start location: evalfstart 14: evalfstart -> evalfbb6in : A'=0, [], cost: 2 15: evalfbb6in -> evalfbb2in : C'=0, D'=1+A, [ B>=1+A ], cost: 2 18: evalfbb2in -> evalfbb2in : C'=1+C, D'=1+D, [ B>=1+D ], cost: 3 19: evalfbb2in -> evalfbb6in : A'=-1+D, [ D>=B && C>=1 ], cost: 2 20: evalfbb2in -> evalfbb6in : A'=D, [ D>=B && 0>=C ], cost: 2 21: evalfbb2in -> evalfbb6in : A'=-1+D, [ B>=1+D && C>=1 ], cost: 3 22: evalfbb2in -> evalfbb6in : A'=D, [ B>=1+D && 0>=C ], cost: 3 Accelerating simple loops of location 4. Accelerating the following rules: 18: evalfbb2in -> evalfbb2in : C'=1+C, D'=1+D, [ B>=1+D ], cost: 3 Accelerated rule 18 with metering function -D+B, yielding the new rule 23. Removing the simple loops: 18. Accelerated all simple loops using metering functions (where possible): Start location: evalfstart 14: evalfstart -> evalfbb6in : A'=0, [], cost: 2 15: evalfbb6in -> evalfbb2in : C'=0, D'=1+A, [ B>=1+A ], cost: 2 19: evalfbb2in -> evalfbb6in : A'=-1+D, [ D>=B && C>=1 ], cost: 2 20: evalfbb2in -> evalfbb6in : A'=D, [ D>=B && 0>=C ], cost: 2 21: evalfbb2in -> evalfbb6in : A'=-1+D, [ B>=1+D && C>=1 ], cost: 3 22: evalfbb2in -> evalfbb6in : A'=D, [ B>=1+D && 0>=C ], cost: 3 23: evalfbb2in -> evalfbb2in : C'=C-D+B, D'=B, [ B>=1+D ], cost: -3*D+3*B Chained accelerated rules (with incoming rules): Start location: evalfstart 14: evalfstart -> evalfbb6in : A'=0, [], cost: 2 15: evalfbb6in -> evalfbb2in : C'=0, D'=1+A, [ B>=1+A ], cost: 2 24: evalfbb6in -> evalfbb2in : C'=-1-A+B, D'=B, [ B>=2+A ], cost: -1-3*A+3*B 19: evalfbb2in -> evalfbb6in : A'=-1+D, [ D>=B && C>=1 ], cost: 2 20: evalfbb2in -> evalfbb6in : A'=D, [ D>=B && 0>=C ], cost: 2 21: evalfbb2in -> evalfbb6in : A'=-1+D, [ B>=1+D && C>=1 ], cost: 3 22: evalfbb2in -> evalfbb6in : A'=D, [ B>=1+D && 0>=C ], cost: 3 Eliminated locations (on tree-shaped paths): Start location: evalfstart 14: evalfstart -> evalfbb6in : A'=0, [], cost: 2 25: evalfbb6in -> evalfbb6in : A'=1+A, C'=0, D'=1+A, [ B>=1+A && 1+A>=B ], cost: 4 26: evalfbb6in -> evalfbb6in : A'=1+A, C'=0, D'=1+A, [ B>=2+A ], cost: 5 27: evalfbb6in -> evalfbb6in : A'=-1+B, C'=-1-A+B, D'=B, [ B>=2+A ], cost: 1-3*A+3*B 28: evalfbb6in -> [11] : [ B>=2+A ], cost: -1-3*A+3*B Accelerating simple loops of location 2. Simplified some of the simple loops (and removed duplicate rules). Accelerating the following rules: 25: evalfbb6in -> evalfbb6in : A'=1+A, C'=0, D'=1+A, [ 1+A-B==0 ], cost: 4 26: evalfbb6in -> evalfbb6in : A'=1+A, C'=0, D'=1+A, [ B>=2+A ], cost: 5 27: evalfbb6in -> evalfbb6in : A'=-1+B, C'=-1-A+B, D'=B, [ B>=2+A ], cost: 1-3*A+3*B Accelerated rule 25 with metering function -A+B, yielding the new rule 29. Accelerated rule 26 with metering function -1-A+B, yielding the new rule 30. Found no metering function for rule 27. Removing the simple loops: 25 26. Accelerated all simple loops using metering functions (where possible): Start location: evalfstart 14: evalfstart -> evalfbb6in : A'=0, [], cost: 2 27: evalfbb6in -> evalfbb6in : A'=-1+B, C'=-1-A+B, D'=B, [ B>=2+A ], cost: 1-3*A+3*B 28: evalfbb6in -> [11] : [ B>=2+A ], cost: -1-3*A+3*B 29: evalfbb6in -> evalfbb6in : A'=B, C'=0, D'=B, [ 1+A-B==0 ], cost: -4*A+4*B 30: evalfbb6in -> evalfbb6in : A'=-1+B, C'=0, D'=-1+B, [ B>=2+A ], cost: -5-5*A+5*B Chained accelerated rules (with incoming rules): Start location: evalfstart 14: evalfstart -> evalfbb6in : A'=0, [], cost: 2 31: evalfstart -> evalfbb6in : A'=-1+B, C'=-1+B, D'=B, [ B>=2 ], cost: 3+3*B 32: evalfstart -> evalfbb6in : A'=B, C'=0, D'=B, [ 1-B==0 ], cost: 2+4*B 33: evalfstart -> evalfbb6in : A'=-1+B, C'=0, D'=-1+B, [ B>=2 ], cost: -3+5*B 28: evalfbb6in -> [11] : [ B>=2+A ], cost: -1-3*A+3*B Eliminated locations (on tree-shaped paths): Start location: evalfstart 34: evalfstart -> [11] : A'=0, [ B>=2 ], cost: 1+3*B 35: evalfstart -> [13] : [ B>=2 ], cost: 3+3*B 36: evalfstart -> [13] : [ 1-B==0 ], cost: 2+4*B 37: evalfstart -> [13] : [ B>=2 ], cost: -3+5*B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: evalfstart 35: evalfstart -> [13] : [ B>=2 ], cost: 3+3*B 36: evalfstart -> [13] : [ 1-B==0 ], cost: 2+4*B 37: evalfstart -> [13] : [ B>=2 ], cost: -3+5*B Computing asymptotic complexity for rule 35 Solved the limit problem by the following transformations: Created initial limit problem: -1+B (+/+!), 3+3*B (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {B==n} resulting limit problem: [solved] Solution: B / n Resulting cost 3+3*n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 3+3*n Rule cost: 3+3*B Rule guard: [ B>=2 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)