/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 35 ms] (2) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval_nd_loop_start(v_0, v_x_0) -> Com_1(eval_nd_loop_bb0_in(v_0, v_x_0)) :|: TRUE eval_nd_loop_bb0_in(v_0, v_x_0) -> Com_1(eval_nd_loop_0(v_0, v_x_0)) :|: TRUE eval_nd_loop_0(v_0, v_x_0) -> Com_1(eval_nd_loop_1(v_0, v_x_0)) :|: TRUE eval_nd_loop_1(v_0, v_x_0) -> Com_1(eval_nd_loop_2(v_0, v_x_0)) :|: TRUE eval_nd_loop_2(v_0, v_x_0) -> Com_1(eval_nd_loop_3(v_0, v_x_0)) :|: TRUE eval_nd_loop_3(v_0, v_x_0) -> Com_1(eval_nd_loop_bb1_in(v_0, 0)) :|: TRUE eval_nd_loop_bb1_in(v_0, v_x_0) -> Com_1(eval_nd_loop_4(v_0, v_x_0)) :|: TRUE eval_nd_loop_4(v_0, v_x_0) -> Com_1(eval_nd_loop_5(nondef_0, v_x_0)) :|: TRUE eval_nd_loop_5(v_0, v_x_0) -> Com_1(eval_nd_loop_bb1_in(v_0, v_0)) :|: v_0 - v_x_0 <= 2 && v_0 - v_x_0 >= 1 && v_0 < 10 eval_nd_loop_5(v_0, v_x_0) -> Com_1(eval_nd_loop_bb2_in(v_0, v_x_0)) :|: v_0 - v_x_0 > 2 eval_nd_loop_5(v_0, v_x_0) -> Com_1(eval_nd_loop_bb2_in(v_0, v_x_0)) :|: v_0 - v_x_0 < 1 eval_nd_loop_5(v_0, v_x_0) -> Com_1(eval_nd_loop_bb2_in(v_0, v_x_0)) :|: v_0 >= 10 eval_nd_loop_bb2_in(v_0, v_x_0) -> Com_1(eval_nd_loop_stop(v_0, v_x_0)) :|: TRUE The start-symbols are:[eval_nd_loop_start_2] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 43) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalndloopstart(Ar_0, Ar_1) -> Com_1(evalndloopbb0in(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalndloopbb0in(Ar_0, Ar_1) -> Com_1(evalndloop0(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalndloop0(Ar_0, Ar_1) -> Com_1(evalndloop1(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalndloop1(Ar_0, Ar_1) -> Com_1(evalndloop2(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalndloop2(Ar_0, Ar_1) -> Com_1(evalndloop3(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalndloop3(Ar_0, Ar_1) -> Com_1(evalndloopbb1in(0, Ar_1)) (Comp: ?, Cost: 1) evalndloopbb1in(Ar_0, Ar_1) -> Com_1(evalndloop4(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalndloop4(Ar_0, Ar_1) -> Com_1(evalndloop5(Ar_0, Fresh_0)) (Comp: ?, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb1in(Ar_1, Ar_1)) [ Ar_0 + 2 >= Ar_1 /\ Ar_1 >= Ar_0 + 1 /\ 9 >= Ar_1 ] (Comp: ?, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 3 ] (Comp: ?, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_1 >= 10 ] (Comp: ?, Cost: 1) evalndloopbb2in(Ar_0, Ar_1) -> Com_1(evalndloopstop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalndloopstart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalndloopstart(Ar_0, Ar_1) -> Com_1(evalndloopbb0in(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloopbb0in(Ar_0, Ar_1) -> Com_1(evalndloop0(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloop0(Ar_0, Ar_1) -> Com_1(evalndloop1(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloop1(Ar_0, Ar_1) -> Com_1(evalndloop2(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloop2(Ar_0, Ar_1) -> Com_1(evalndloop3(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloop3(Ar_0, Ar_1) -> Com_1(evalndloopbb1in(0, Ar_1)) (Comp: ?, Cost: 1) evalndloopbb1in(Ar_0, Ar_1) -> Com_1(evalndloop4(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalndloop4(Ar_0, Ar_1) -> Com_1(evalndloop5(Ar_0, Fresh_0)) (Comp: ?, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb1in(Ar_1, Ar_1)) [ Ar_0 + 2 >= Ar_1 /\ Ar_1 >= Ar_0 + 1 /\ 9 >= Ar_1 ] (Comp: ?, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 3 ] (Comp: ?, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_1 >= 10 ] (Comp: ?, Cost: 1) evalndloopbb2in(Ar_0, Ar_1) -> Com_1(evalndloopstop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalndloopstart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalndloopstart) = 2 Pol(evalndloopbb0in) = 2 Pol(evalndloop0) = 2 Pol(evalndloop1) = 2 Pol(evalndloop2) = 2 Pol(evalndloop3) = 2 Pol(evalndloopbb1in) = 2 Pol(evalndloop4) = 2 Pol(evalndloop5) = 2 Pol(evalndloopbb2in) = 1 Pol(evalndloopstop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalndloopbb2in(Ar_0, Ar_1) -> Com_1(evalndloopstop(Ar_0, Ar_1)) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_1 >= 10 ] evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 3 ] evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalndloopstart(Ar_0, Ar_1) -> Com_1(evalndloopbb0in(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloopbb0in(Ar_0, Ar_1) -> Com_1(evalndloop0(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloop0(Ar_0, Ar_1) -> Com_1(evalndloop1(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloop1(Ar_0, Ar_1) -> Com_1(evalndloop2(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloop2(Ar_0, Ar_1) -> Com_1(evalndloop3(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloop3(Ar_0, Ar_1) -> Com_1(evalndloopbb1in(0, Ar_1)) (Comp: ?, Cost: 1) evalndloopbb1in(Ar_0, Ar_1) -> Com_1(evalndloop4(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalndloop4(Ar_0, Ar_1) -> Com_1(evalndloop5(Ar_0, Fresh_0)) (Comp: ?, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb1in(Ar_1, Ar_1)) [ Ar_0 + 2 >= Ar_1 /\ Ar_1 >= Ar_0 + 1 /\ 9 >= Ar_1 ] (Comp: 2, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 3 ] (Comp: 2, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: 2, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_1 >= 10 ] (Comp: 2, Cost: 1) evalndloopbb2in(Ar_0, Ar_1) -> Com_1(evalndloopstop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalndloopstart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalndloopstart) = 9 Pol(evalndloopbb0in) = 9 Pol(evalndloop0) = 9 Pol(evalndloop1) = 9 Pol(evalndloop2) = 9 Pol(evalndloop3) = 9 Pol(evalndloopbb1in) = -V_1 + 9 Pol(evalndloop4) = -V_1 + 9 Pol(evalndloop5) = -V_1 + 9 Pol(evalndloopbb2in) = -V_1 Pol(evalndloopstop) = -V_1 Pol(koat_start) = 9 orients all transitions weakly and the transition evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb1in(Ar_1, Ar_1)) [ Ar_0 + 2 >= Ar_1 /\ Ar_1 >= Ar_0 + 1 /\ 9 >= Ar_1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) evalndloopstart(Ar_0, Ar_1) -> Com_1(evalndloopbb0in(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloopbb0in(Ar_0, Ar_1) -> Com_1(evalndloop0(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloop0(Ar_0, Ar_1) -> Com_1(evalndloop1(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloop1(Ar_0, Ar_1) -> Com_1(evalndloop2(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloop2(Ar_0, Ar_1) -> Com_1(evalndloop3(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloop3(Ar_0, Ar_1) -> Com_1(evalndloopbb1in(0, Ar_1)) (Comp: ?, Cost: 1) evalndloopbb1in(Ar_0, Ar_1) -> Com_1(evalndloop4(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalndloop4(Ar_0, Ar_1) -> Com_1(evalndloop5(Ar_0, Fresh_0)) (Comp: 9, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb1in(Ar_1, Ar_1)) [ Ar_0 + 2 >= Ar_1 /\ Ar_1 >= Ar_0 + 1 /\ 9 >= Ar_1 ] (Comp: 2, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 3 ] (Comp: 2, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: 2, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_1 >= 10 ] (Comp: 2, Cost: 1) evalndloopbb2in(Ar_0, Ar_1) -> Com_1(evalndloopstop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalndloopstart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 4 produces the following problem: 5: T: (Comp: 1, Cost: 1) evalndloopstart(Ar_0, Ar_1) -> Com_1(evalndloopbb0in(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloopbb0in(Ar_0, Ar_1) -> Com_1(evalndloop0(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloop0(Ar_0, Ar_1) -> Com_1(evalndloop1(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloop1(Ar_0, Ar_1) -> Com_1(evalndloop2(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloop2(Ar_0, Ar_1) -> Com_1(evalndloop3(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalndloop3(Ar_0, Ar_1) -> Com_1(evalndloopbb1in(0, Ar_1)) (Comp: 10, Cost: 1) evalndloopbb1in(Ar_0, Ar_1) -> Com_1(evalndloop4(Ar_0, Ar_1)) (Comp: 10, Cost: 1) evalndloop4(Ar_0, Ar_1) -> Com_1(evalndloop5(Ar_0, Fresh_0)) (Comp: 9, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb1in(Ar_1, Ar_1)) [ Ar_0 + 2 >= Ar_1 /\ Ar_1 >= Ar_0 + 1 /\ 9 >= Ar_1 ] (Comp: 2, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 3 ] (Comp: 2, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: 2, Cost: 1) evalndloop5(Ar_0, Ar_1) -> Com_1(evalndloopbb2in(Ar_0, Ar_1)) [ Ar_1 >= 10 ] (Comp: 2, Cost: 1) evalndloopbb2in(Ar_0, Ar_1) -> Com_1(evalndloopstop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalndloopstart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 43 Time: 0.058 sec (SMT: 0.044 sec) ---------------------------------------- (2) BOUNDS(1, 1)