/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 39 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 621 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval_start_start(v__0, v__1, v_y, v_z) -> Com_1(eval_start_bb0_in(v__0, v__1, v_y, v_z)) :|: TRUE eval_start_bb0_in(v__0, v__1, v_y, v_z) -> Com_1(eval_start_0(v__0, v__1, v_y, v_z)) :|: TRUE eval_start_0(v__0, v__1, v_y, v_z) -> Com_1(eval_start_1(v__0, v__1, v_y, v_z)) :|: TRUE eval_start_1(v__0, v__1, v_y, v_z) -> Com_1(eval_start_2(v__0, v__1, v_y, v_z)) :|: TRUE eval_start_2(v__0, v__1, v_y, v_z) -> Com_1(eval_start_3(v__0, v__1, v_y, v_z)) :|: TRUE eval_start_3(v__0, v__1, v_y, v_z) -> Com_1(eval_start_bb1_in(v_y, v__1, v_y, v_z)) :|: TRUE eval_start_bb1_in(v__0, v__1, v_y, v_z) -> Com_1(eval_start_bb2_in(v__0, v__1, v_y, v_z)) :|: v_z > v__0 eval_start_bb1_in(v__0, v__1, v_y, v_z) -> Com_1(eval_start_bb3_in(v__0, v__0, v_y, v_z)) :|: v_z <= v__0 eval_start_bb2_in(v__0, v__1, v_y, v_z) -> Com_1(eval_start_bb1_in(v__0 + 1, v__1, v_y, v_z)) :|: TRUE eval_start_bb3_in(v__0, v__1, v_y, v_z) -> Com_1(eval_start_bb4_in(v__0, v__1, v_y, v_z)) :|: v__1 > 2 eval_start_bb3_in(v__0, v__1, v_y, v_z) -> Com_1(eval_start_bb5_in(v__0, v__1, v_y, v_z)) :|: v__1 <= 2 eval_start_bb4_in(v__0, v__1, v_y, v_z) -> Com_1(eval_start_bb3_in(v__0, v__1 - 3, v_y, v_z)) :|: TRUE eval_start_bb5_in(v__0, v__1, v_y, v_z) -> Com_1(eval_start_stop(v__0, v__1, v_y, v_z)) :|: TRUE The start-symbols are:[eval_start_start_4] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 14*Ar_1 + 14*Ar_2 + 15) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart0(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalstart0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart1(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalstart1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart2(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalstart2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart3(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalstart3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_1, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_0)) [ Ar_0 >= Ar_2 ] (Comp: ?, Cost: 1) evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= 3 ] (Comp: ?, Cost: 1) evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 2 >= Ar_3 ] (Comp: ?, Cost: 1) evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3 - 3)) (Comp: ?, Cost: 1) evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart0(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart1(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart2(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart3(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_1, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_0)) [ Ar_0 >= Ar_2 ] (Comp: ?, Cost: 1) evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= 3 ] (Comp: ?, Cost: 1) evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 2 >= Ar_3 ] (Comp: ?, Cost: 1) evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3 - 3)) (Comp: ?, Cost: 1) evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalstartstart) = 3 Pol(evalstartbb0in) = 3 Pol(evalstart0) = 3 Pol(evalstart1) = 3 Pol(evalstart2) = 3 Pol(evalstart3) = 3 Pol(evalstartbb1in) = 3 Pol(evalstartbb2in) = 3 Pol(evalstartbb3in) = 2 Pol(evalstartbb4in) = 2 Pol(evalstartbb5in) = 1 Pol(evalstartstop) = 0 Pol(koat_start) = 3 orients all transitions weakly and the transitions evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstop(Ar_0, Ar_1, Ar_2, Ar_3)) evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 2 >= Ar_3 ] evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_0)) [ Ar_0 >= Ar_2 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart0(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart1(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart2(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart3(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_1, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: 3, Cost: 1) evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_0)) [ Ar_0 >= Ar_2 ] (Comp: ?, Cost: 1) evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= 3 ] (Comp: 3, Cost: 1) evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 2 >= Ar_3 ] (Comp: ?, Cost: 1) evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3 - 3)) (Comp: 3, Cost: 1) evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalstartstart) = -V_2 + V_3 Pol(evalstartbb0in) = -V_2 + V_3 Pol(evalstart0) = -V_2 + V_3 Pol(evalstart1) = -V_2 + V_3 Pol(evalstart2) = -V_2 + V_3 Pol(evalstart3) = -V_2 + V_3 Pol(evalstartbb1in) = -V_1 + V_3 Pol(evalstartbb2in) = -V_1 + V_3 - 1 Pol(evalstartbb3in) = -2*V_1 + V_3 + V_4 Pol(evalstartbb4in) = -2*V_1 + V_3 + V_4 Pol(evalstartbb5in) = -2*V_1 + V_3 + V_4 Pol(evalstartstop) = -2*V_1 + V_3 + V_4 Pol(koat_start) = -V_2 + V_3 orients all transitions weakly and the transition evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart0(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart1(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart2(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart3(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_1, Ar_1, Ar_2, Ar_3)) (Comp: Ar_1 + Ar_2, Cost: 1) evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: 3, Cost: 1) evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_0)) [ Ar_0 >= Ar_2 ] (Comp: ?, Cost: 1) evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= 3 ] (Comp: 3, Cost: 1) evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 2 >= Ar_3 ] (Comp: ?, Cost: 1) evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3 - 3)) (Comp: 3, Cost: 1) evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 4 produces the following problem: 5: T: (Comp: 1, Cost: 1) evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart0(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart1(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart2(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart3(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_1, Ar_1, Ar_2, Ar_3)) (Comp: Ar_1 + Ar_2, Cost: 1) evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: 3, Cost: 1) evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_0)) [ Ar_0 >= Ar_2 ] (Comp: Ar_1 + Ar_2, Cost: 1) evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= 3 ] (Comp: 3, Cost: 1) evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 2 >= Ar_3 ] (Comp: ?, Cost: 1) evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3 - 3)) (Comp: 3, Cost: 1) evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalstartbb4in) = V_4 - 3 Pol(evalstartbb3in) = V_4 and size complexities S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ]", 0-1) = Ar_1 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ]", 0-2) = Ar_2 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ]", 0-3) = Ar_3 S("evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstop(Ar_0, Ar_1, Ar_2, Ar_3))", 0-0) = 2*Ar_1 + 2*Ar_2 S("evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstop(Ar_0, Ar_1, Ar_2, Ar_3))", 0-1) = Ar_1 S("evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstop(Ar_0, Ar_1, Ar_2, Ar_3))", 0-2) = Ar_2 S("evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstop(Ar_0, Ar_1, Ar_2, Ar_3))", 0-3) = ? S("evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3 - 3))", 0-0) = 2*Ar_1 + 2*Ar_2 S("evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3 - 3))", 0-1) = Ar_1 S("evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3 - 3))", 0-2) = Ar_2 S("evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3 - 3))", 0-3) = ? S("evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 2 >= Ar_3 ]", 0-0) = 2*Ar_1 + 2*Ar_2 S("evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 2 >= Ar_3 ]", 0-1) = Ar_1 S("evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 2 >= Ar_3 ]", 0-2) = Ar_2 S("evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 2 >= Ar_3 ]", 0-3) = ? S("evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= 3 ]", 0-0) = 2*Ar_1 + 2*Ar_2 S("evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= 3 ]", 0-1) = Ar_1 S("evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= 3 ]", 0-2) = Ar_2 S("evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= 3 ]", 0-3) = ? S("evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3))", 0-0) = 2*Ar_1 + 2*Ar_2 S("evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3))", 0-1) = Ar_1 S("evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3))", 0-2) = Ar_2 S("evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3))", 0-3) = Ar_3 S("evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_0)) [ Ar_0 >= Ar_2 ]", 0-0) = 2*Ar_1 + 2*Ar_2 S("evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_0)) [ Ar_0 >= Ar_2 ]", 0-1) = Ar_1 S("evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_0)) [ Ar_0 >= Ar_2 ]", 0-2) = Ar_2 S("evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_0)) [ Ar_0 >= Ar_2 ]", 0-3) = 2*Ar_1 + 2*Ar_2 S("evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ]", 0-0) = 2*Ar_1 + 2*Ar_2 S("evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ]", 0-1) = Ar_1 S("evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ]", 0-2) = Ar_2 S("evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ]", 0-3) = Ar_3 S("evalstart3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_1, Ar_1, Ar_2, Ar_3))", 0-0) = Ar_1 S("evalstart3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_1, Ar_1, Ar_2, Ar_3))", 0-1) = Ar_1 S("evalstart3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_1, Ar_1, Ar_2, Ar_3))", 0-2) = Ar_2 S("evalstart3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_1, Ar_1, Ar_2, Ar_3))", 0-3) = Ar_3 S("evalstart2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart3(Ar_0, Ar_1, Ar_2, Ar_3))", 0-0) = Ar_0 S("evalstart2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart3(Ar_0, Ar_1, Ar_2, Ar_3))", 0-1) = Ar_1 S("evalstart2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart3(Ar_0, Ar_1, Ar_2, Ar_3))", 0-2) = Ar_2 S("evalstart2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart3(Ar_0, Ar_1, Ar_2, Ar_3))", 0-3) = Ar_3 S("evalstart1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart2(Ar_0, Ar_1, Ar_2, Ar_3))", 0-0) = Ar_0 S("evalstart1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart2(Ar_0, Ar_1, Ar_2, Ar_3))", 0-1) = Ar_1 S("evalstart1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart2(Ar_0, Ar_1, Ar_2, Ar_3))", 0-2) = Ar_2 S("evalstart1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart2(Ar_0, Ar_1, Ar_2, Ar_3))", 0-3) = Ar_3 S("evalstart0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart1(Ar_0, Ar_1, Ar_2, Ar_3))", 0-0) = Ar_0 S("evalstart0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart1(Ar_0, Ar_1, Ar_2, Ar_3))", 0-1) = Ar_1 S("evalstart0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart1(Ar_0, Ar_1, Ar_2, Ar_3))", 0-2) = Ar_2 S("evalstart0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart1(Ar_0, Ar_1, Ar_2, Ar_3))", 0-3) = Ar_3 S("evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart0(Ar_0, Ar_1, Ar_2, Ar_3))", 0-0) = Ar_0 S("evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart0(Ar_0, Ar_1, Ar_2, Ar_3))", 0-1) = Ar_1 S("evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart0(Ar_0, Ar_1, Ar_2, Ar_3))", 0-2) = Ar_2 S("evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart0(Ar_0, Ar_1, Ar_2, Ar_3))", 0-3) = Ar_3 S("evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3))", 0-0) = Ar_0 S("evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3))", 0-1) = Ar_1 S("evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3))", 0-2) = Ar_2 S("evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3))", 0-3) = Ar_3 orients the transitions evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3 - 3)) evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= 3 ] weakly and the transition evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= 3 ] strictly and produces the following problem: 6: T: (Comp: 1, Cost: 1) evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart0(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart1(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart2(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart3(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_1, Ar_1, Ar_2, Ar_3)) (Comp: Ar_1 + Ar_2, Cost: 1) evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: 3, Cost: 1) evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_0)) [ Ar_0 >= Ar_2 ] (Comp: Ar_1 + Ar_2, Cost: 1) evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) (Comp: 6*Ar_1 + 6*Ar_2, Cost: 1) evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= 3 ] (Comp: 3, Cost: 1) evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 2 >= Ar_3 ] (Comp: ?, Cost: 1) evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3 - 3)) (Comp: 3, Cost: 1) evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 6 produces the following problem: 7: T: (Comp: 1, Cost: 1) evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstartbb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart0(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart1(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart2(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstart3(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalstart3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_1, Ar_1, Ar_2, Ar_3)) (Comp: Ar_1 + Ar_2, Cost: 1) evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: 3, Cost: 1) evalstartbb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_0)) [ Ar_0 >= Ar_2 ] (Comp: Ar_1 + Ar_2, Cost: 1) evalstartbb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) (Comp: 6*Ar_1 + 6*Ar_2, Cost: 1) evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= 3 ] (Comp: 3, Cost: 1) evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 2 >= Ar_3 ] (Comp: 6*Ar_1 + 6*Ar_2, Cost: 1) evalstartbb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartbb3in(Ar_0, Ar_1, Ar_2, Ar_3 - 3)) (Comp: 3, Cost: 1) evalstartbb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalstartstart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 14*Ar_1 + 14*Ar_2 + 15 Time: 0.103 sec (SMT: 0.074 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: evalstartstart 0: evalstartstart -> evalstartbb0in : [], cost: 1 1: evalstartbb0in -> evalstart0 : [], cost: 1 2: evalstart0 -> evalstart1 : [], cost: 1 3: evalstart1 -> evalstart2 : [], cost: 1 4: evalstart2 -> evalstart3 : [], cost: 1 5: evalstart3 -> evalstartbb1in : A'=B, [], cost: 1 6: evalstartbb1in -> evalstartbb2in : [ C>=1+A ], cost: 1 7: evalstartbb1in -> evalstartbb3in : D'=A, [ A>=C ], cost: 1 8: evalstartbb2in -> evalstartbb1in : A'=1+A, [], cost: 1 9: evalstartbb3in -> evalstartbb4in : [ D>=3 ], cost: 1 10: evalstartbb3in -> evalstartbb5in : [ 2>=D ], cost: 1 11: evalstartbb4in -> evalstartbb3in : D'=-3+D, [], cost: 1 12: evalstartbb5in -> evalstartstop : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: evalstartstart -> evalstartbb0in : [], cost: 1 Removed unreachable and leaf rules: Start location: evalstartstart 0: evalstartstart -> evalstartbb0in : [], cost: 1 1: evalstartbb0in -> evalstart0 : [], cost: 1 2: evalstart0 -> evalstart1 : [], cost: 1 3: evalstart1 -> evalstart2 : [], cost: 1 4: evalstart2 -> evalstart3 : [], cost: 1 5: evalstart3 -> evalstartbb1in : A'=B, [], cost: 1 6: evalstartbb1in -> evalstartbb2in : [ C>=1+A ], cost: 1 7: evalstartbb1in -> evalstartbb3in : D'=A, [ A>=C ], cost: 1 8: evalstartbb2in -> evalstartbb1in : A'=1+A, [], cost: 1 9: evalstartbb3in -> evalstartbb4in : [ D>=3 ], cost: 1 11: evalstartbb4in -> evalstartbb3in : D'=-3+D, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: evalstartstart 17: evalstartstart -> evalstartbb1in : A'=B, [], cost: 6 7: evalstartbb1in -> evalstartbb3in : D'=A, [ A>=C ], cost: 1 18: evalstartbb1in -> evalstartbb1in : A'=1+A, [ C>=1+A ], cost: 2 19: evalstartbb3in -> evalstartbb3in : D'=-3+D, [ D>=3 ], cost: 2 Accelerating simple loops of location 6. Accelerating the following rules: 18: evalstartbb1in -> evalstartbb1in : A'=1+A, [ C>=1+A ], cost: 2 Accelerated rule 18 with metering function C-A, yielding the new rule 20. Removing the simple loops: 18. Accelerating simple loops of location 8. Accelerating the following rules: 19: evalstartbb3in -> evalstartbb3in : D'=-3+D, [ D>=3 ], cost: 2 Accelerated rule 19 with metering function meter (where 3*meter==-2+D), yielding the new rule 21. Removing the simple loops: 19. Accelerated all simple loops using metering functions (where possible): Start location: evalstartstart 17: evalstartstart -> evalstartbb1in : A'=B, [], cost: 6 7: evalstartbb1in -> evalstartbb3in : D'=A, [ A>=C ], cost: 1 20: evalstartbb1in -> evalstartbb1in : A'=C, [ C>=1+A ], cost: 2*C-2*A 21: evalstartbb3in -> evalstartbb3in : D'=D-3*meter, [ D>=3 && 3*meter==-2+D && meter>=1 ], cost: 2*meter Chained accelerated rules (with incoming rules): Start location: evalstartstart 17: evalstartstart -> evalstartbb1in : A'=B, [], cost: 6 22: evalstartstart -> evalstartbb1in : A'=C, [ C>=1+B ], cost: 6+2*C-2*B 7: evalstartbb1in -> evalstartbb3in : D'=A, [ A>=C ], cost: 1 23: evalstartbb1in -> evalstartbb3in : D'=A-3*meter, [ A>=C && A>=3 && 3*meter==-2+A && meter>=1 ], cost: 1+2*meter Removed unreachable locations (and leaf rules with constant cost): Start location: evalstartstart 17: evalstartstart -> evalstartbb1in : A'=B, [], cost: 6 22: evalstartstart -> evalstartbb1in : A'=C, [ C>=1+B ], cost: 6+2*C-2*B 23: evalstartbb1in -> evalstartbb3in : D'=A-3*meter, [ A>=C && A>=3 && 3*meter==-2+A && meter>=1 ], cost: 1+2*meter Eliminated locations (on tree-shaped paths): Start location: evalstartstart 24: evalstartstart -> evalstartbb3in : A'=B, D'=-3*meter+B, [ B>=C && B>=3 && 3*meter==-2+B && meter>=1 ], cost: 7+2*meter 25: evalstartstart -> evalstartbb3in : A'=C, D'=C-3*meter, [ C>=1+B && C>=3 && 3*meter==-2+C && meter>=1 ], cost: 7+2*C+2*meter-2*B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: evalstartstart 24: evalstartstart -> evalstartbb3in : A'=B, D'=-3*meter+B, [ B>=C && B>=3 && 3*meter==-2+B && meter>=1 ], cost: 7+2*meter 25: evalstartstart -> evalstartbb3in : A'=C, D'=C-3*meter, [ C>=1+B && C>=3 && 3*meter==-2+C && meter>=1 ], cost: 7+2*C+2*meter-2*B Computing asymptotic complexity for rule 24 Solved the limit problem by the following transformations: Created initial limit problem: 1-C+B (+/+!), 3+3*meter-B (+/+!), 7+2*meter (+), -1-3*meter+B (+/+!), -2+B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {C==3*n,meter==n,B==2+3*n} resulting limit problem: [solved] Solution: C / 3*n meter / n B / 2+3*n Resulting cost 7+2*n has complexity: Poly(n^1) Found new complexity Poly(n^1). Computing asymptotic complexity for rule 25 Solved the limit problem by the following transformations: Created initial limit problem: -2+C (+/+!), C-B (+/+!), 7+2*C+2*meter-2*B (+), 3-C+3*meter (+/+!), -1+C-3*meter (+/+!) [not solved] applying transformation rule (C) using substitution {C==2+3*meter} resulting limit problem: 1 (+/+!), 3*meter (+/+!), 11+8*meter-2*B (+), 2+3*meter-B (+/+!) [not solved] applying transformation rule (B), deleting 1 (+/+!) resulting limit problem: 3*meter (+/+!), 11+8*meter-2*B (+), 2+3*meter-B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {meter==n,B==0} resulting limit problem: [solved] Solved the limit problem by the following transformations: Created initial limit problem: -2+C (+/+!), C-B (+/+!), 7+2*C+2*meter-2*B (+), 3-C+3*meter (+/+!), -1+C-3*meter (+/+!) [not solved] applying transformation rule (C) using substitution {C==2+3*meter} resulting limit problem: 1 (+/+!), 3*meter (+/+!), 11+8*meter-2*B (+), 2+3*meter-B (+/+!) [not solved] applying transformation rule (B), deleting 1 (+/+!) resulting limit problem: 3*meter (+/+!), 11+8*meter-2*B (+), 2+3*meter-B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {meter==n,B==0} resulting limit problem: [solved] Solution: C / 2+3*n meter / n B / 0 Resulting cost 11+8*n has complexity: Poly(n^1) Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 7+2*n Rule cost: 7+2*meter Rule guard: [ B>=C && B>=3 && 3*meter==-2+B ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)