/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 222 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 738 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval_speedSimpleMultiple_start(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_speedSimpleMultiple_bb0_in(v_m, v_n, v_x_0, v_y_0)) :|: TRUE eval_speedSimpleMultiple_bb0_in(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_speedSimpleMultiple_0(v_m, v_n, v_x_0, v_y_0)) :|: TRUE eval_speedSimpleMultiple_0(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_speedSimpleMultiple_1(v_m, v_n, v_x_0, v_y_0)) :|: TRUE eval_speedSimpleMultiple_1(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_speedSimpleMultiple_2(v_m, v_n, v_x_0, v_y_0)) :|: TRUE eval_speedSimpleMultiple_2(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_speedSimpleMultiple_3(v_m, v_n, v_x_0, v_y_0)) :|: TRUE eval_speedSimpleMultiple_3(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_speedSimpleMultiple_4(v_m, v_n, v_x_0, v_y_0)) :|: TRUE eval_speedSimpleMultiple_4(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_speedSimpleMultiple_5(v_m, v_n, v_x_0, v_y_0)) :|: TRUE eval_speedSimpleMultiple_5(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_speedSimpleMultiple_6(v_m, v_n, v_x_0, v_y_0)) :|: TRUE eval_speedSimpleMultiple_6(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_speedSimpleMultiple_bb1_in(v_m, v_n, 0, 0)) :|: TRUE eval_speedSimpleMultiple_bb1_in(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_speedSimpleMultiple_bb2_in(v_m, v_n, v_x_0, v_y_0)) :|: v_x_0 < v_n eval_speedSimpleMultiple_bb1_in(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_speedSimpleMultiple_bb3_in(v_m, v_n, v_x_0, v_y_0)) :|: v_x_0 >= v_n eval_speedSimpleMultiple_bb2_in(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_speedSimpleMultiple_bb1_in(v_m, v_n, v_x_0, v_y_0 + 1)) :|: v_y_0 < v_m eval_speedSimpleMultiple_bb2_in(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_speedSimpleMultiple_bb1_in(v_m, v_n, v_x_0 + 1, v_y_0 + 1)) :|: v_y_0 < v_m && v_y_0 >= v_m eval_speedSimpleMultiple_bb2_in(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_speedSimpleMultiple_bb1_in(v_m, v_n, v_x_0, v_y_0)) :|: v_y_0 >= v_m && v_y_0 < v_m eval_speedSimpleMultiple_bb2_in(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_speedSimpleMultiple_bb1_in(v_m, v_n, v_x_0 + 1, v_y_0)) :|: v_y_0 >= v_m eval_speedSimpleMultiple_bb3_in(v_m, v_n, v_x_0, v_y_0) -> Com_1(eval_speedSimpleMultiple_stop(v_m, v_n, v_x_0, v_y_0)) :|: TRUE The start-symbols are:[eval_speedSimpleMultiple_start_4] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 2*Ar_2 + 2*Ar_3 + 14) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalspeedSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple0(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiple0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple1(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiple1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple2(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiple2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple3(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiple3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple4(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiple4(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple5(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiple5(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple6(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiple6(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(0, 0, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_2 ] (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0 + 1, Ar_1 + 1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 + 1 /\ Ar_1 >= Ar_3 ] (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_3 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 ] (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Testing for reachability in the complexity graph removes the following transitions from problem 1: evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0 + 1, Ar_1 + 1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 + 1 /\ Ar_1 >= Ar_3 ] evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 /\ Ar_3 >= Ar_1 + 1 ] We thus obtain the following problem: 2: T: (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 ] (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_2 ] (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalspeedSimpleMultiple6(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(0, 0, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiple5(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple6(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiple4(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple5(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiple3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple4(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiple2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple3(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiple1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple2(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiple0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple1(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple0(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 ] (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_2 ] (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) evalspeedSimpleMultiple6(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(0, 0, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple5(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple6(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple4(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple5(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple4(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple3(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple2(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple1(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiplebb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple0(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalspeedSimpleMultiplebb3in) = 1 Pol(evalspeedSimpleMultiplestop) = 0 Pol(evalspeedSimpleMultiplebb2in) = 2 Pol(evalspeedSimpleMultiplebb1in) = 2 Pol(evalspeedSimpleMultiple6) = 2 Pol(evalspeedSimpleMultiple5) = 2 Pol(evalspeedSimpleMultiple4) = 2 Pol(evalspeedSimpleMultiple3) = 2 Pol(evalspeedSimpleMultiple2) = 2 Pol(evalspeedSimpleMultiple1) = 2 Pol(evalspeedSimpleMultiple0) = 2 Pol(evalspeedSimpleMultiplebb0in) = 2 Pol(evalspeedSimpleMultiplestart) = 2 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_2 ] strictly and produces the following problem: 4: T: (Comp: 2, Cost: 1) evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 ] (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 + 1 ] (Comp: 2, Cost: 1) evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_2 ] (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) evalspeedSimpleMultiple6(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(0, 0, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple5(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple6(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple4(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple5(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple4(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple3(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple2(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple1(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiplebb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple0(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalspeedSimpleMultiplebb3in) = -V_2 + V_4 Pol(evalspeedSimpleMultiplestop) = -V_2 + V_4 Pol(evalspeedSimpleMultiplebb2in) = -V_2 + V_4 Pol(evalspeedSimpleMultiplebb1in) = -V_2 + V_4 Pol(evalspeedSimpleMultiple6) = V_4 Pol(evalspeedSimpleMultiple5) = V_4 Pol(evalspeedSimpleMultiple4) = V_4 Pol(evalspeedSimpleMultiple3) = V_4 Pol(evalspeedSimpleMultiple2) = V_4 Pol(evalspeedSimpleMultiple1) = V_4 Pol(evalspeedSimpleMultiple0) = V_4 Pol(evalspeedSimpleMultiplebb0in) = V_4 Pol(evalspeedSimpleMultiplestart) = V_4 Pol(koat_start) = V_4 orients all transitions weakly and the transition evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 + 1 ] strictly and produces the following problem: 5: T: (Comp: 2, Cost: 1) evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_3 ] (Comp: Ar_3, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) [ Ar_3 >= Ar_1 + 1 ] (Comp: 2, Cost: 1) evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_2 ] (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) evalspeedSimpleMultiple6(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(0, 0, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple5(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple6(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple4(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple5(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple4(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple3(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple2(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple1(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiplebb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple0(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 5 to obtain the following invariants: For symbol evalspeedSimpleMultiplebb1in: X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 For symbol evalspeedSimpleMultiplebb2in: X_3 - 1 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 - 1 >= 0 /\ -X_1 + X_3 - 1 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 For symbol evalspeedSimpleMultiplebb3in: X_1 - X_3 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 This yielded the following problem: 6: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] (Comp: 1, Cost: 1) evalspeedSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiplebb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple0(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple1(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple2(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple3(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple4(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple4(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple5(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple5(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple6(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple6(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(0, 0, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_2 >= Ar_0 + 1 ] (Comp: 2, Cost: 1) evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_0 >= Ar_2 ] (Comp: Ar_3, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ -Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_3 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ -Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_1 >= Ar_3 ] (Comp: 2, Cost: 1) evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 - Ar_2 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = V_3 Pol(evalspeedSimpleMultiplestart) = V_3 Pol(evalspeedSimpleMultiplebb0in) = V_3 Pol(evalspeedSimpleMultiple0) = V_3 Pol(evalspeedSimpleMultiple1) = V_3 Pol(evalspeedSimpleMultiple2) = V_3 Pol(evalspeedSimpleMultiple3) = V_3 Pol(evalspeedSimpleMultiple4) = V_3 Pol(evalspeedSimpleMultiple5) = V_3 Pol(evalspeedSimpleMultiple6) = V_3 Pol(evalspeedSimpleMultiplebb1in) = -V_1 + V_3 Pol(evalspeedSimpleMultiplebb2in) = -V_1 + V_3 Pol(evalspeedSimpleMultiplebb3in) = -V_1 + V_3 Pol(evalspeedSimpleMultiplestop) = -V_1 + V_3 orients all transitions weakly and the transition evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ -Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_1 >= Ar_3 ] strictly and produces the following problem: 7: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] (Comp: 1, Cost: 1) evalspeedSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiplebb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple0(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple1(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple2(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple3(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple4(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple4(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple5(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple5(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple6(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple6(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(0, 0, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_2 >= Ar_0 + 1 ] (Comp: 2, Cost: 1) evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_0 >= Ar_2 ] (Comp: Ar_3, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ -Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_3 >= Ar_1 + 1 ] (Comp: Ar_2, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ -Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_1 >= Ar_3 ] (Comp: 2, Cost: 1) evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 - Ar_2 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 7 produces the following problem: 8: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] (Comp: 1, Cost: 1) evalspeedSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb0in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiplebb0in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple0(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple1(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple1(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple2(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple3(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple3(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple4(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple4(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple5(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple5(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiple6(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalspeedSimpleMultiple6(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(0, 0, Ar_2, Ar_3)) (Comp: Ar_2 + Ar_3 + 1, Cost: 1) evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_2 >= Ar_0 + 1 ] (Comp: 2, Cost: 1) evalspeedSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_0 >= Ar_2 ] (Comp: Ar_3, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ -Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_3 >= Ar_1 + 1 ] (Comp: Ar_2, Cost: 1) evalspeedSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplebb1in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ -Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_1 >= Ar_3 ] (Comp: 2, Cost: 1) evalspeedSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalspeedSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 - Ar_2 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 2*Ar_2 + 2*Ar_3 + 14 Time: 0.235 sec (SMT: 0.183 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: evalspeedSimpleMultiplestart 0: evalspeedSimpleMultiplestart -> evalspeedSimpleMultiplebb0in : [], cost: 1 1: evalspeedSimpleMultiplebb0in -> evalspeedSimpleMultiple0 : [], cost: 1 2: evalspeedSimpleMultiple0 -> evalspeedSimpleMultiple1 : [], cost: 1 3: evalspeedSimpleMultiple1 -> evalspeedSimpleMultiple2 : [], cost: 1 4: evalspeedSimpleMultiple2 -> evalspeedSimpleMultiple3 : [], cost: 1 5: evalspeedSimpleMultiple3 -> evalspeedSimpleMultiple4 : [], cost: 1 6: evalspeedSimpleMultiple4 -> evalspeedSimpleMultiple5 : [], cost: 1 7: evalspeedSimpleMultiple5 -> evalspeedSimpleMultiple6 : [], cost: 1 8: evalspeedSimpleMultiple6 -> evalspeedSimpleMultiplebb1in : A'=0, B'=0, [], cost: 1 9: evalspeedSimpleMultiplebb1in -> evalspeedSimpleMultiplebb2in : [ C>=1+A ], cost: 1 10: evalspeedSimpleMultiplebb1in -> evalspeedSimpleMultiplebb3in : [ A>=C ], cost: 1 11: evalspeedSimpleMultiplebb2in -> evalspeedSimpleMultiplebb1in : B'=1+B, [ D>=1+B ], cost: 1 12: evalspeedSimpleMultiplebb2in -> evalspeedSimpleMultiplebb1in : A'=1+A, B'=1+B, [ D>=1+B && B>=D ], cost: 1 13: evalspeedSimpleMultiplebb2in -> evalspeedSimpleMultiplebb1in : [ B>=D && D>=1+B ], cost: 1 14: evalspeedSimpleMultiplebb2in -> evalspeedSimpleMultiplebb1in : A'=1+A, [ B>=D ], cost: 1 15: evalspeedSimpleMultiplebb3in -> evalspeedSimpleMultiplestop : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: evalspeedSimpleMultiplestart -> evalspeedSimpleMultiplebb0in : [], cost: 1 Removed unreachable and leaf rules: Start location: evalspeedSimpleMultiplestart 0: evalspeedSimpleMultiplestart -> evalspeedSimpleMultiplebb0in : [], cost: 1 1: evalspeedSimpleMultiplebb0in -> evalspeedSimpleMultiple0 : [], cost: 1 2: evalspeedSimpleMultiple0 -> evalspeedSimpleMultiple1 : [], cost: 1 3: evalspeedSimpleMultiple1 -> evalspeedSimpleMultiple2 : [], cost: 1 4: evalspeedSimpleMultiple2 -> evalspeedSimpleMultiple3 : [], cost: 1 5: evalspeedSimpleMultiple3 -> evalspeedSimpleMultiple4 : [], cost: 1 6: evalspeedSimpleMultiple4 -> evalspeedSimpleMultiple5 : [], cost: 1 7: evalspeedSimpleMultiple5 -> evalspeedSimpleMultiple6 : [], cost: 1 8: evalspeedSimpleMultiple6 -> evalspeedSimpleMultiplebb1in : A'=0, B'=0, [], cost: 1 9: evalspeedSimpleMultiplebb1in -> evalspeedSimpleMultiplebb2in : [ C>=1+A ], cost: 1 11: evalspeedSimpleMultiplebb2in -> evalspeedSimpleMultiplebb1in : B'=1+B, [ D>=1+B ], cost: 1 12: evalspeedSimpleMultiplebb2in -> evalspeedSimpleMultiplebb1in : A'=1+A, B'=1+B, [ D>=1+B && B>=D ], cost: 1 13: evalspeedSimpleMultiplebb2in -> evalspeedSimpleMultiplebb1in : [ B>=D && D>=1+B ], cost: 1 14: evalspeedSimpleMultiplebb2in -> evalspeedSimpleMultiplebb1in : A'=1+A, [ B>=D ], cost: 1 Removed rules with unsatisfiable guard: Start location: evalspeedSimpleMultiplestart 0: evalspeedSimpleMultiplestart -> evalspeedSimpleMultiplebb0in : [], cost: 1 1: evalspeedSimpleMultiplebb0in -> evalspeedSimpleMultiple0 : [], cost: 1 2: evalspeedSimpleMultiple0 -> evalspeedSimpleMultiple1 : [], cost: 1 3: evalspeedSimpleMultiple1 -> evalspeedSimpleMultiple2 : [], cost: 1 4: evalspeedSimpleMultiple2 -> evalspeedSimpleMultiple3 : [], cost: 1 5: evalspeedSimpleMultiple3 -> evalspeedSimpleMultiple4 : [], cost: 1 6: evalspeedSimpleMultiple4 -> evalspeedSimpleMultiple5 : [], cost: 1 7: evalspeedSimpleMultiple5 -> evalspeedSimpleMultiple6 : [], cost: 1 8: evalspeedSimpleMultiple6 -> evalspeedSimpleMultiplebb1in : A'=0, B'=0, [], cost: 1 9: evalspeedSimpleMultiplebb1in -> evalspeedSimpleMultiplebb2in : [ C>=1+A ], cost: 1 11: evalspeedSimpleMultiplebb2in -> evalspeedSimpleMultiplebb1in : B'=1+B, [ D>=1+B ], cost: 1 14: evalspeedSimpleMultiplebb2in -> evalspeedSimpleMultiplebb1in : A'=1+A, [ B>=D ], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: evalspeedSimpleMultiplestart 23: evalspeedSimpleMultiplestart -> evalspeedSimpleMultiplebb1in : A'=0, B'=0, [], cost: 9 9: evalspeedSimpleMultiplebb1in -> evalspeedSimpleMultiplebb2in : [ C>=1+A ], cost: 1 11: evalspeedSimpleMultiplebb2in -> evalspeedSimpleMultiplebb1in : B'=1+B, [ D>=1+B ], cost: 1 14: evalspeedSimpleMultiplebb2in -> evalspeedSimpleMultiplebb1in : A'=1+A, [ B>=D ], cost: 1 Eliminated locations (on tree-shaped paths): Start location: evalspeedSimpleMultiplestart 23: evalspeedSimpleMultiplestart -> evalspeedSimpleMultiplebb1in : A'=0, B'=0, [], cost: 9 24: evalspeedSimpleMultiplebb1in -> evalspeedSimpleMultiplebb1in : B'=1+B, [ C>=1+A && D>=1+B ], cost: 2 25: evalspeedSimpleMultiplebb1in -> evalspeedSimpleMultiplebb1in : A'=1+A, [ C>=1+A && B>=D ], cost: 2 Accelerating simple loops of location 9. Accelerating the following rules: 24: evalspeedSimpleMultiplebb1in -> evalspeedSimpleMultiplebb1in : B'=1+B, [ C>=1+A && D>=1+B ], cost: 2 25: evalspeedSimpleMultiplebb1in -> evalspeedSimpleMultiplebb1in : A'=1+A, [ C>=1+A && B>=D ], cost: 2 Accelerated rule 24 with metering function D-B, yielding the new rule 26. Accelerated rule 25 with metering function C-A, yielding the new rule 27. Removing the simple loops: 24 25. Accelerated all simple loops using metering functions (where possible): Start location: evalspeedSimpleMultiplestart 23: evalspeedSimpleMultiplestart -> evalspeedSimpleMultiplebb1in : A'=0, B'=0, [], cost: 9 26: evalspeedSimpleMultiplebb1in -> evalspeedSimpleMultiplebb1in : B'=D, [ C>=1+A && D>=1+B ], cost: 2*D-2*B 27: evalspeedSimpleMultiplebb1in -> evalspeedSimpleMultiplebb1in : A'=C, [ C>=1+A && B>=D ], cost: 2*C-2*A Chained accelerated rules (with incoming rules): Start location: evalspeedSimpleMultiplestart 23: evalspeedSimpleMultiplestart -> evalspeedSimpleMultiplebb1in : A'=0, B'=0, [], cost: 9 28: evalspeedSimpleMultiplestart -> evalspeedSimpleMultiplebb1in : A'=0, B'=D, [ C>=1 && D>=1 ], cost: 9+2*D 29: evalspeedSimpleMultiplestart -> evalspeedSimpleMultiplebb1in : A'=C, B'=0, [ C>=1 && 0>=D ], cost: 9+2*C Removed unreachable locations (and leaf rules with constant cost): Start location: evalspeedSimpleMultiplestart 28: evalspeedSimpleMultiplestart -> evalspeedSimpleMultiplebb1in : A'=0, B'=D, [ C>=1 && D>=1 ], cost: 9+2*D 29: evalspeedSimpleMultiplestart -> evalspeedSimpleMultiplebb1in : A'=C, B'=0, [ C>=1 && 0>=D ], cost: 9+2*C ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: evalspeedSimpleMultiplestart 28: evalspeedSimpleMultiplestart -> evalspeedSimpleMultiplebb1in : A'=0, B'=D, [ C>=1 && D>=1 ], cost: 9+2*D 29: evalspeedSimpleMultiplestart -> evalspeedSimpleMultiplebb1in : A'=C, B'=0, [ C>=1 && 0>=D ], cost: 9+2*C Computing asymptotic complexity for rule 28 Solved the limit problem by the following transformations: Created initial limit problem: C (+/+!), D (+/+!), 9+2*D (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {C==1,D==n} resulting limit problem: [solved] Solution: C / 1 D / n Resulting cost 9+2*n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 9+2*n Rule cost: 9+2*D Rule guard: [ C>=1 && D>=1 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)