/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 100 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 1734 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: evalwcet1start(A, B, C, D) -> Com_1(evalwcet1entryin(A, B, C, D)) :|: TRUE evalwcet1entryin(A, B, C, D) -> Com_1(evalwcet1bbin(A, 0, A, D)) :|: A >= 1 evalwcet1entryin(A, B, C, D) -> Com_1(evalwcet1returnin(A, B, C, D)) :|: 0 >= A evalwcet1bbin(A, B, C, D) -> Com_1(evalwcet1bb1in(A, B, C, D)) :|: 0 >= E + 1 evalwcet1bbin(A, B, C, D) -> Com_1(evalwcet1bb1in(A, B, C, D)) :|: E >= 1 evalwcet1bbin(A, B, C, D) -> Com_1(evalwcet1bb4in(A, B, C, D)) :|: TRUE evalwcet1bb1in(A, B, C, D) -> Com_1(evalwcet1bb6in(A, B, C, 0)) :|: B + 1 >= A evalwcet1bb1in(A, B, C, D) -> Com_1(evalwcet1bb6in(A, B, C, B + 1)) :|: A >= B + 2 evalwcet1bb4in(A, B, C, D) -> Com_1(evalwcet1bb5in(A, B, C, D)) :|: 1 >= B evalwcet1bb4in(A, B, C, D) -> Com_1(evalwcet1bb6in(A, B, C, B - 1)) :|: B >= 2 evalwcet1bb5in(A, B, C, D) -> Com_1(evalwcet1bb6in(A, B, C, 0)) :|: TRUE evalwcet1bb6in(A, B, C, D) -> Com_1(evalwcet1bbin(A, D, C - 1, D)) :|: C >= 2 evalwcet1bb6in(A, B, C, D) -> Com_1(evalwcet1returnin(A, B, C, D)) :|: 1 >= C evalwcet1returnin(A, B, C, D) -> Com_1(evalwcet1stop(A, B, C, D)) :|: TRUE The start-symbols are:[evalwcet1start_4] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 11*Ar_0 + 17) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, 0, Ar_0, Ar_3)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= E + 1 ] (Comp: ?, Cost: 1) evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ E >= 1 ] (Comp: ?, Cost: 1) evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0)) [ Ar_1 + 1 >= Ar_0 ] (Comp: ?, Cost: 1) evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 2 ] (Comp: ?, Cost: 1) evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_1 ] (Comp: ?, Cost: 1) evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 - 1)) [ Ar_1 >= 2 ] (Comp: ?, Cost: 1) evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0)) (Comp: ?, Cost: 1) evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, Ar_3, Ar_2 - 1, Ar_3)) [ Ar_2 >= 2 ] (Comp: ?, Cost: 1) evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_2 ] (Comp: ?, Cost: 1) evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1stop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, 0, Ar_0, Ar_3)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 1) evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= E + 1 ] (Comp: ?, Cost: 1) evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ E >= 1 ] (Comp: ?, Cost: 1) evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0)) [ Ar_1 + 1 >= Ar_0 ] (Comp: ?, Cost: 1) evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 2 ] (Comp: ?, Cost: 1) evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_1 ] (Comp: ?, Cost: 1) evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 - 1)) [ Ar_1 >= 2 ] (Comp: ?, Cost: 1) evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0)) (Comp: ?, Cost: 1) evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, Ar_3, Ar_2 - 1, Ar_3)) [ Ar_2 >= 2 ] (Comp: ?, Cost: 1) evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_2 ] (Comp: ?, Cost: 1) evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1stop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalwcet1start) = 2 Pol(evalwcet1entryin) = 2 Pol(evalwcet1bbin) = 2 Pol(evalwcet1returnin) = 1 Pol(evalwcet1bb1in) = 2 Pol(evalwcet1bb4in) = 2 Pol(evalwcet1bb6in) = 2 Pol(evalwcet1bb5in) = 2 Pol(evalwcet1stop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1stop(Ar_0, Ar_1, Ar_2, Ar_3)) evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_2 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, 0, Ar_0, Ar_3)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 1) evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= E + 1 ] (Comp: ?, Cost: 1) evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ E >= 1 ] (Comp: ?, Cost: 1) evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0)) [ Ar_1 + 1 >= Ar_0 ] (Comp: ?, Cost: 1) evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 2 ] (Comp: ?, Cost: 1) evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_1 ] (Comp: ?, Cost: 1) evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 - 1)) [ Ar_1 >= 2 ] (Comp: ?, Cost: 1) evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0)) (Comp: ?, Cost: 1) evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, Ar_3, Ar_2 - 1, Ar_3)) [ Ar_2 >= 2 ] (Comp: 2, Cost: 1) evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_2 ] (Comp: 2, Cost: 1) evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1stop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalwcet1bbin) = V_3 Pol(evalwcet1bb4in) = V_3 Pol(evalwcet1bb1in) = V_3 Pol(evalwcet1bb6in) = V_3 Pol(evalwcet1bb5in) = V_3 and size complexities S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ]", 0-1) = Ar_1 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ]", 0-2) = Ar_2 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ]", 0-3) = Ar_3 S("evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1stop(Ar_0, Ar_1, Ar_2, Ar_3))", 0-0) = Ar_0 S("evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1stop(Ar_0, Ar_1, Ar_2, Ar_3))", 0-1) = ? S("evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1stop(Ar_0, Ar_1, Ar_2, Ar_3))", 0-2) = Ar_0 + Ar_2 S("evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1stop(Ar_0, Ar_1, Ar_2, Ar_3))", 0-3) = ? S("evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_2 ]", 0-0) = Ar_0 S("evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_2 ]", 0-1) = ? S("evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_2 ]", 0-2) = Ar_0 S("evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_2 ]", 0-3) = ? S("evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, Ar_3, Ar_2 - 1, Ar_3)) [ Ar_2 >= 2 ]", 0-0) = Ar_0 S("evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, Ar_3, Ar_2 - 1, Ar_3)) [ Ar_2 >= 2 ]", 0-1) = ? S("evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, Ar_3, Ar_2 - 1, Ar_3)) [ Ar_2 >= 2 ]", 0-2) = Ar_0 S("evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, Ar_3, Ar_2 - 1, Ar_3)) [ Ar_2 >= 2 ]", 0-3) = ? S("evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0))", 0-0) = Ar_0 S("evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0))", 0-1) = ? S("evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0))", 0-2) = Ar_0 S("evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0))", 0-3) = 0 S("evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 - 1)) [ Ar_1 >= 2 ]", 0-0) = Ar_0 S("evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 - 1)) [ Ar_1 >= 2 ]", 0-1) = ? S("evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 - 1)) [ Ar_1 >= 2 ]", 0-2) = Ar_0 S("evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 - 1)) [ Ar_1 >= 2 ]", 0-3) = ? S("evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_1 ]", 0-0) = Ar_0 S("evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_1 ]", 0-1) = ? S("evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_1 ]", 0-2) = Ar_0 S("evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_1 ]", 0-3) = ? S("evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 2 ]", 0-0) = Ar_0 S("evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 2 ]", 0-1) = ? S("evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 2 ]", 0-2) = Ar_0 S("evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 2 ]", 0-3) = ? S("evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0)) [ Ar_1 + 1 >= Ar_0 ]", 0-0) = Ar_0 S("evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0)) [ Ar_1 + 1 >= Ar_0 ]", 0-1) = ? S("evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0)) [ Ar_1 + 1 >= Ar_0 ]", 0-2) = Ar_0 S("evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0)) [ Ar_1 + 1 >= Ar_0 ]", 0-3) = 0 S("evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3))", 0-0) = Ar_0 S("evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3))", 0-1) = ? S("evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3))", 0-2) = Ar_0 S("evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3))", 0-3) = ? S("evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ E >= 1 ]", 0-0) = Ar_0 S("evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ E >= 1 ]", 0-1) = ? S("evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ E >= 1 ]", 0-2) = Ar_0 S("evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ E >= 1 ]", 0-3) = ? S("evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= E + 1 ]", 0-0) = Ar_0 S("evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= E + 1 ]", 0-1) = ? S("evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= E + 1 ]", 0-2) = Ar_0 S("evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= E + 1 ]", 0-3) = ? S("evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= Ar_0 ]", 0-0) = Ar_0 S("evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= Ar_0 ]", 0-1) = Ar_1 S("evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= Ar_0 ]", 0-2) = Ar_2 S("evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= Ar_0 ]", 0-3) = Ar_3 S("evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, 0, Ar_0, Ar_3)) [ Ar_0 >= 1 ]", 0-0) = Ar_0 S("evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, 0, Ar_0, Ar_3)) [ Ar_0 >= 1 ]", 0-1) = 0 S("evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, 0, Ar_0, Ar_3)) [ Ar_0 >= 1 ]", 0-2) = Ar_0 S("evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, 0, Ar_0, Ar_3)) [ Ar_0 >= 1 ]", 0-3) = Ar_3 S("evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3))", 0-0) = Ar_0 S("evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3))", 0-1) = Ar_1 S("evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3))", 0-2) = Ar_2 S("evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3))", 0-3) = Ar_3 orients the transitions evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3)) evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ E >= 1 ] evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= E + 1 ] evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, Ar_3, Ar_2 - 1, Ar_3)) [ Ar_2 >= 2 ] evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0)) evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 - 1)) [ Ar_1 >= 2 ] evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_1 ] evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 2 ] evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0)) [ Ar_1 + 1 >= Ar_0 ] weakly and the transition evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, Ar_3, Ar_2 - 1, Ar_3)) [ Ar_2 >= 2 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, 0, Ar_0, Ar_3)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 1) evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= E + 1 ] (Comp: ?, Cost: 1) evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ E >= 1 ] (Comp: ?, Cost: 1) evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0)) [ Ar_1 + 1 >= Ar_0 ] (Comp: ?, Cost: 1) evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 2 ] (Comp: ?, Cost: 1) evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_1 ] (Comp: ?, Cost: 1) evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 - 1)) [ Ar_1 >= 2 ] (Comp: ?, Cost: 1) evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0)) (Comp: Ar_0, Cost: 1) evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, Ar_3, Ar_2 - 1, Ar_3)) [ Ar_2 >= 2 ] (Comp: 2, Cost: 1) evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_2 ] (Comp: 2, Cost: 1) evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1stop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 4 produces the following problem: 5: T: (Comp: 1, Cost: 1) evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, 0, Ar_0, Ar_3)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 1) evalwcet1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= Ar_0 ] (Comp: Ar_0 + 1, Cost: 1) evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= E + 1 ] (Comp: Ar_0 + 1, Cost: 1) evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ E >= 1 ] (Comp: Ar_0 + 1, Cost: 1) evalwcet1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 2*Ar_0 + 2, Cost: 1) evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0)) [ Ar_1 + 1 >= Ar_0 ] (Comp: 2*Ar_0 + 2, Cost: 1) evalwcet1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 2 ] (Comp: Ar_0 + 1, Cost: 1) evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_1 ] (Comp: Ar_0 + 1, Cost: 1) evalwcet1bb4in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_1 - 1)) [ Ar_1 >= 2 ] (Comp: Ar_0 + 1, Cost: 1) evalwcet1bb5in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bb6in(Ar_0, Ar_1, Ar_2, 0)) (Comp: Ar_0, Cost: 1) evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1bbin(Ar_0, Ar_3, Ar_2 - 1, Ar_3)) [ Ar_2 >= 2 ] (Comp: 2, Cost: 1) evalwcet1bb6in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_2 ] (Comp: 2, Cost: 1) evalwcet1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1stop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalwcet1start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 11*Ar_0 + 17 Time: 0.133 sec (SMT: 0.108 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: evalwcet1start 0: evalwcet1start -> evalwcet1entryin : [], cost: 1 1: evalwcet1entryin -> evalwcet1bbin : B'=0, C'=A, [ A>=1 ], cost: 1 2: evalwcet1entryin -> evalwcet1returnin : [ 0>=A ], cost: 1 3: evalwcet1bbin -> evalwcet1bb1in : [ 0>=1+free ], cost: 1 4: evalwcet1bbin -> evalwcet1bb1in : [ free_1>=1 ], cost: 1 5: evalwcet1bbin -> evalwcet1bb4in : [], cost: 1 6: evalwcet1bb1in -> evalwcet1bb6in : D'=0, [ 1+B>=A ], cost: 1 7: evalwcet1bb1in -> evalwcet1bb6in : D'=1+B, [ A>=2+B ], cost: 1 8: evalwcet1bb4in -> evalwcet1bb5in : [ 1>=B ], cost: 1 9: evalwcet1bb4in -> evalwcet1bb6in : D'=-1+B, [ B>=2 ], cost: 1 10: evalwcet1bb5in -> evalwcet1bb6in : D'=0, [], cost: 1 11: evalwcet1bb6in -> evalwcet1bbin : B'=D, C'=-1+C, [ C>=2 ], cost: 1 12: evalwcet1bb6in -> evalwcet1returnin : [ 1>=C ], cost: 1 13: evalwcet1returnin -> evalwcet1stop : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: evalwcet1start -> evalwcet1entryin : [], cost: 1 Removed unreachable and leaf rules: Start location: evalwcet1start 0: evalwcet1start -> evalwcet1entryin : [], cost: 1 1: evalwcet1entryin -> evalwcet1bbin : B'=0, C'=A, [ A>=1 ], cost: 1 3: evalwcet1bbin -> evalwcet1bb1in : [ 0>=1+free ], cost: 1 4: evalwcet1bbin -> evalwcet1bb1in : [ free_1>=1 ], cost: 1 5: evalwcet1bbin -> evalwcet1bb4in : [], cost: 1 6: evalwcet1bb1in -> evalwcet1bb6in : D'=0, [ 1+B>=A ], cost: 1 7: evalwcet1bb1in -> evalwcet1bb6in : D'=1+B, [ A>=2+B ], cost: 1 8: evalwcet1bb4in -> evalwcet1bb5in : [ 1>=B ], cost: 1 9: evalwcet1bb4in -> evalwcet1bb6in : D'=-1+B, [ B>=2 ], cost: 1 10: evalwcet1bb5in -> evalwcet1bb6in : D'=0, [], cost: 1 11: evalwcet1bb6in -> evalwcet1bbin : B'=D, C'=-1+C, [ C>=2 ], cost: 1 Simplified all rules, resulting in: Start location: evalwcet1start 0: evalwcet1start -> evalwcet1entryin : [], cost: 1 1: evalwcet1entryin -> evalwcet1bbin : B'=0, C'=A, [ A>=1 ], cost: 1 4: evalwcet1bbin -> evalwcet1bb1in : [], cost: 1 5: evalwcet1bbin -> evalwcet1bb4in : [], cost: 1 6: evalwcet1bb1in -> evalwcet1bb6in : D'=0, [ 1+B>=A ], cost: 1 7: evalwcet1bb1in -> evalwcet1bb6in : D'=1+B, [ A>=2+B ], cost: 1 8: evalwcet1bb4in -> evalwcet1bb5in : [ 1>=B ], cost: 1 9: evalwcet1bb4in -> evalwcet1bb6in : D'=-1+B, [ B>=2 ], cost: 1 10: evalwcet1bb5in -> evalwcet1bb6in : D'=0, [], cost: 1 11: evalwcet1bb6in -> evalwcet1bbin : B'=D, C'=-1+C, [ C>=2 ], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: evalwcet1start 14: evalwcet1start -> evalwcet1bbin : B'=0, C'=A, [ A>=1 ], cost: 2 4: evalwcet1bbin -> evalwcet1bb1in : [], cost: 1 5: evalwcet1bbin -> evalwcet1bb4in : [], cost: 1 6: evalwcet1bb1in -> evalwcet1bb6in : D'=0, [ 1+B>=A ], cost: 1 7: evalwcet1bb1in -> evalwcet1bb6in : D'=1+B, [ A>=2+B ], cost: 1 9: evalwcet1bb4in -> evalwcet1bb6in : D'=-1+B, [ B>=2 ], cost: 1 15: evalwcet1bb4in -> evalwcet1bb6in : D'=0, [ 1>=B ], cost: 2 11: evalwcet1bb6in -> evalwcet1bbin : B'=D, C'=-1+C, [ C>=2 ], cost: 1 Eliminated locations (on tree-shaped paths): Start location: evalwcet1start 14: evalwcet1start -> evalwcet1bbin : B'=0, C'=A, [ A>=1 ], cost: 2 16: evalwcet1bbin -> evalwcet1bb6in : D'=0, [ 1+B>=A ], cost: 2 17: evalwcet1bbin -> evalwcet1bb6in : D'=1+B, [ A>=2+B ], cost: 2 18: evalwcet1bbin -> evalwcet1bb6in : D'=-1+B, [ B>=2 ], cost: 2 19: evalwcet1bbin -> evalwcet1bb6in : D'=0, [ 1>=B ], cost: 3 11: evalwcet1bb6in -> evalwcet1bbin : B'=D, C'=-1+C, [ C>=2 ], cost: 1 Eliminated locations (on tree-shaped paths): Start location: evalwcet1start 14: evalwcet1start -> evalwcet1bbin : B'=0, C'=A, [ A>=1 ], cost: 2 20: evalwcet1bbin -> evalwcet1bbin : B'=0, C'=-1+C, D'=0, [ 1+B>=A && C>=2 ], cost: 3 21: evalwcet1bbin -> evalwcet1bbin : B'=1+B, C'=-1+C, D'=1+B, [ A>=2+B && C>=2 ], cost: 3 22: evalwcet1bbin -> evalwcet1bbin : B'=-1+B, C'=-1+C, D'=-1+B, [ B>=2 && C>=2 ], cost: 3 23: evalwcet1bbin -> evalwcet1bbin : B'=0, C'=-1+C, D'=0, [ 1>=B && C>=2 ], cost: 4 Accelerating simple loops of location 2. Accelerating the following rules: 20: evalwcet1bbin -> evalwcet1bbin : B'=0, C'=-1+C, D'=0, [ 1+B>=A && C>=2 ], cost: 3 21: evalwcet1bbin -> evalwcet1bbin : B'=1+B, C'=-1+C, D'=1+B, [ A>=2+B && C>=2 ], cost: 3 22: evalwcet1bbin -> evalwcet1bbin : B'=-1+B, C'=-1+C, D'=-1+B, [ B>=2 && C>=2 ], cost: 3 23: evalwcet1bbin -> evalwcet1bbin : B'=0, C'=-1+C, D'=0, [ 1>=B && C>=2 ], cost: 4 Accelerated rule 20 with metering function -1+C (after strengthening guard), yielding the new rule 24. Found no metering function for rule 21. Accelerated rule 22 with metering function -1+C (after adding B>=C), yielding the new rule 25. Accelerated rule 22 with metering function -1+B (after adding B<=C), yielding the new rule 26. Accelerated rule 23 with metering function -1+C, yielding the new rule 27. Removing the simple loops: 22 23. Accelerated all simple loops using metering functions (where possible): Start location: evalwcet1start 14: evalwcet1start -> evalwcet1bbin : B'=0, C'=A, [ A>=1 ], cost: 2 20: evalwcet1bbin -> evalwcet1bbin : B'=0, C'=-1+C, D'=0, [ 1+B>=A && C>=2 ], cost: 3 21: evalwcet1bbin -> evalwcet1bbin : B'=1+B, C'=-1+C, D'=1+B, [ A>=2+B && C>=2 ], cost: 3 24: evalwcet1bbin -> evalwcet1bbin : B'=0, C'=1, D'=0, [ 1+B>=A && C>=2 && 1>=A ], cost: -3+3*C 25: evalwcet1bbin -> evalwcet1bbin : B'=1-C+B, C'=1, D'=1-C+B, [ B>=2 && C>=2 && B>=C ], cost: -3+3*C 26: evalwcet1bbin -> evalwcet1bbin : B'=1, C'=1+C-B, D'=1, [ B>=2 && C>=2 && B<=C ], cost: -3+3*B 27: evalwcet1bbin -> evalwcet1bbin : B'=0, C'=1, D'=0, [ 1>=B && C>=2 ], cost: -4+4*C Chained accelerated rules (with incoming rules): Start location: evalwcet1start 14: evalwcet1start -> evalwcet1bbin : B'=0, C'=A, [ A>=1 ], cost: 2 28: evalwcet1start -> evalwcet1bbin : B'=1, C'=-1+A, D'=1, [ A>=2 ], cost: 5 29: evalwcet1start -> evalwcet1bbin : B'=0, C'=1, D'=0, [ A>=2 ], cost: -2+4*A Removed unreachable locations (and leaf rules with constant cost): Start location: evalwcet1start 29: evalwcet1start -> evalwcet1bbin : B'=0, C'=1, D'=0, [ A>=2 ], cost: -2+4*A ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: evalwcet1start 29: evalwcet1start -> evalwcet1bbin : B'=0, C'=1, D'=0, [ A>=2 ], cost: -2+4*A Computing asymptotic complexity for rule 29 Solved the limit problem by the following transformations: Created initial limit problem: -1+A (+/+!), -2+4*A (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n} resulting limit problem: [solved] Solution: A / n Resulting cost -2+4*n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: -2+4*n Rule cost: -2+4*A Rule guard: [ A>=2 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)