/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 13 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 634 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: evalwcet2start(A, B) -> Com_1(evalwcet2entryin(A, B)) :|: TRUE evalwcet2entryin(A, B) -> Com_1(evalwcet2bb5in(A, B)) :|: TRUE evalwcet2bb5in(A, B) -> Com_1(evalwcet2bb2in(A, 0)) :|: 4 >= A evalwcet2bb5in(A, B) -> Com_1(evalwcet2returnin(A, B)) :|: A >= 5 evalwcet2bb2in(A, B) -> Com_1(evalwcet2bb1in(A, B)) :|: A >= 3 && 9 >= B evalwcet2bb2in(A, B) -> Com_1(evalwcet2bb4in(A, B)) :|: 2 >= A evalwcet2bb2in(A, B) -> Com_1(evalwcet2bb4in(A, B)) :|: B >= 10 evalwcet2bb1in(A, B) -> Com_1(evalwcet2bb2in(A, B + 1)) :|: TRUE evalwcet2bb4in(A, B) -> Com_1(evalwcet2bb5in(A + 1, B)) :|: TRUE evalwcet2returnin(A, B) -> Com_1(evalwcet2stop(A, B)) :|: TRUE The start-symbols are:[evalwcet2start_2] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 56*Ar_0 + 258) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalwcet2start(Ar_0, Ar_1) -> Com_1(evalwcet2entryin(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalwcet2entryin(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, 0)) [ 4 >= Ar_0 ] (Comp: ?, Cost: 1) evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2returnin(Ar_0, Ar_1)) [ Ar_0 >= 5 ] (Comp: ?, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb1in(Ar_0, Ar_1)) [ Ar_0 >= 3 /\ 9 >= Ar_1 ] (Comp: ?, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ 2 >= Ar_0 ] (Comp: ?, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ Ar_1 >= 10 ] (Comp: ?, Cost: 1) evalwcet2bb1in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, Ar_1 + 1)) (Comp: ?, Cost: 1) evalwcet2bb4in(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0 + 1, Ar_1)) (Comp: ?, Cost: 1) evalwcet2returnin(Ar_0, Ar_1) -> Com_1(evalwcet2stop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalwcet2start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalwcet2start(Ar_0, Ar_1) -> Com_1(evalwcet2entryin(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalwcet2entryin(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, 0)) [ 4 >= Ar_0 ] (Comp: ?, Cost: 1) evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2returnin(Ar_0, Ar_1)) [ Ar_0 >= 5 ] (Comp: ?, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb1in(Ar_0, Ar_1)) [ Ar_0 >= 3 /\ 9 >= Ar_1 ] (Comp: ?, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ 2 >= Ar_0 ] (Comp: ?, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ Ar_1 >= 10 ] (Comp: ?, Cost: 1) evalwcet2bb1in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, Ar_1 + 1)) (Comp: ?, Cost: 1) evalwcet2bb4in(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0 + 1, Ar_1)) (Comp: ?, Cost: 1) evalwcet2returnin(Ar_0, Ar_1) -> Com_1(evalwcet2stop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalwcet2start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalwcet2start) = 2 Pol(evalwcet2entryin) = 2 Pol(evalwcet2bb5in) = 2 Pol(evalwcet2bb2in) = 2 Pol(evalwcet2returnin) = 1 Pol(evalwcet2bb1in) = 2 Pol(evalwcet2bb4in) = 2 Pol(evalwcet2stop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalwcet2returnin(Ar_0, Ar_1) -> Com_1(evalwcet2stop(Ar_0, Ar_1)) evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2returnin(Ar_0, Ar_1)) [ Ar_0 >= 5 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalwcet2start(Ar_0, Ar_1) -> Com_1(evalwcet2entryin(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalwcet2entryin(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, 0)) [ 4 >= Ar_0 ] (Comp: 2, Cost: 1) evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2returnin(Ar_0, Ar_1)) [ Ar_0 >= 5 ] (Comp: ?, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb1in(Ar_0, Ar_1)) [ Ar_0 >= 3 /\ 9 >= Ar_1 ] (Comp: ?, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ 2 >= Ar_0 ] (Comp: ?, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ Ar_1 >= 10 ] (Comp: ?, Cost: 1) evalwcet2bb1in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, Ar_1 + 1)) (Comp: ?, Cost: 1) evalwcet2bb4in(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0 + 1, Ar_1)) (Comp: 2, Cost: 1) evalwcet2returnin(Ar_0, Ar_1) -> Com_1(evalwcet2stop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalwcet2start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalwcet2start) = -2*V_1 + 9 Pol(evalwcet2entryin) = -2*V_1 + 9 Pol(evalwcet2bb5in) = -2*V_1 + 9 Pol(evalwcet2bb2in) = -2*V_1 + 8 Pol(evalwcet2returnin) = -2*V_1 Pol(evalwcet2bb1in) = -2*V_1 + 8 Pol(evalwcet2bb4in) = -2*V_1 + 7 Pol(evalwcet2stop) = -2*V_1 Pol(koat_start) = -2*V_1 + 9 orients all transitions weakly and the transitions evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, 0)) [ 4 >= Ar_0 ] evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ 2 >= Ar_0 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) evalwcet2start(Ar_0, Ar_1) -> Com_1(evalwcet2entryin(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalwcet2entryin(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0, Ar_1)) (Comp: 2*Ar_0 + 9, Cost: 1) evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, 0)) [ 4 >= Ar_0 ] (Comp: 2, Cost: 1) evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2returnin(Ar_0, Ar_1)) [ Ar_0 >= 5 ] (Comp: ?, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb1in(Ar_0, Ar_1)) [ Ar_0 >= 3 /\ 9 >= Ar_1 ] (Comp: 2*Ar_0 + 9, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ 2 >= Ar_0 ] (Comp: ?, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ Ar_1 >= 10 ] (Comp: ?, Cost: 1) evalwcet2bb1in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, Ar_1 + 1)) (Comp: ?, Cost: 1) evalwcet2bb4in(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0 + 1, Ar_1)) (Comp: 2, Cost: 1) evalwcet2returnin(Ar_0, Ar_1) -> Com_1(evalwcet2stop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalwcet2start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalwcet2bb4in) = 1 Pol(evalwcet2bb5in) = 0 Pol(evalwcet2bb2in) = 2 Pol(evalwcet2bb1in) = 2 and size complexities S("koat_start(Ar_0, Ar_1) -> Com_1(evalwcet2start(Ar_0, Ar_1)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1) -> Com_1(evalwcet2start(Ar_0, Ar_1)) [ 0 <= 0 ]", 0-1) = Ar_1 S("evalwcet2returnin(Ar_0, Ar_1) -> Com_1(evalwcet2stop(Ar_0, Ar_1))", 0-0) = ? S("evalwcet2returnin(Ar_0, Ar_1) -> Com_1(evalwcet2stop(Ar_0, Ar_1))", 0-1) = ? S("evalwcet2bb4in(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0 + 1, Ar_1))", 0-0) = ? S("evalwcet2bb4in(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0 + 1, Ar_1))", 0-1) = ? S("evalwcet2bb1in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, Ar_1 + 1))", 0-0) = ? S("evalwcet2bb1in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, Ar_1 + 1))", 0-1) = ? S("evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ Ar_1 >= 10 ]", 0-0) = ? S("evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ Ar_1 >= 10 ]", 0-1) = ? S("evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ 2 >= Ar_0 ]", 0-0) = ? S("evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ 2 >= Ar_0 ]", 0-1) = ? S("evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb1in(Ar_0, Ar_1)) [ Ar_0 >= 3 /\\ 9 >= Ar_1 ]", 0-0) = ? S("evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb1in(Ar_0, Ar_1)) [ Ar_0 >= 3 /\\ 9 >= Ar_1 ]", 0-1) = ? S("evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2returnin(Ar_0, Ar_1)) [ Ar_0 >= 5 ]", 0-0) = ? S("evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2returnin(Ar_0, Ar_1)) [ Ar_0 >= 5 ]", 0-1) = ? S("evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, 0)) [ 4 >= Ar_0 ]", 0-0) = ? S("evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, 0)) [ 4 >= Ar_0 ]", 0-1) = 0 S("evalwcet2entryin(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0, Ar_1))", 0-0) = Ar_0 S("evalwcet2entryin(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0, Ar_1))", 0-1) = Ar_1 S("evalwcet2start(Ar_0, Ar_1) -> Com_1(evalwcet2entryin(Ar_0, Ar_1))", 0-0) = Ar_0 S("evalwcet2start(Ar_0, Ar_1) -> Com_1(evalwcet2entryin(Ar_0, Ar_1))", 0-1) = Ar_1 orients the transitions evalwcet2bb4in(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0 + 1, Ar_1)) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ Ar_1 >= 10 ] evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb1in(Ar_0, Ar_1)) [ Ar_0 >= 3 /\ 9 >= Ar_1 ] evalwcet2bb1in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, Ar_1 + 1)) weakly and the transitions evalwcet2bb4in(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0 + 1, Ar_1)) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ Ar_1 >= 10 ] strictly and produces the following problem: 5: T: (Comp: 1, Cost: 1) evalwcet2start(Ar_0, Ar_1) -> Com_1(evalwcet2entryin(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalwcet2entryin(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0, Ar_1)) (Comp: 2*Ar_0 + 9, Cost: 1) evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, 0)) [ 4 >= Ar_0 ] (Comp: 2, Cost: 1) evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2returnin(Ar_0, Ar_1)) [ Ar_0 >= 5 ] (Comp: ?, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb1in(Ar_0, Ar_1)) [ Ar_0 >= 3 /\ 9 >= Ar_1 ] (Comp: 2*Ar_0 + 9, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ 2 >= Ar_0 ] (Comp: 6*Ar_0 + 27, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ Ar_1 >= 10 ] (Comp: ?, Cost: 1) evalwcet2bb1in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, Ar_1 + 1)) (Comp: 6*Ar_0 + 27, Cost: 1) evalwcet2bb4in(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0 + 1, Ar_1)) (Comp: 2, Cost: 1) evalwcet2returnin(Ar_0, Ar_1) -> Com_1(evalwcet2stop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalwcet2start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalwcet2bb2in) = -V_2 + 10 Pol(evalwcet2bb1in) = -V_2 + 9 and size complexities S("koat_start(Ar_0, Ar_1) -> Com_1(evalwcet2start(Ar_0, Ar_1)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1) -> Com_1(evalwcet2start(Ar_0, Ar_1)) [ 0 <= 0 ]", 0-1) = Ar_1 S("evalwcet2returnin(Ar_0, Ar_1) -> Com_1(evalwcet2stop(Ar_0, Ar_1))", 0-0) = 7*Ar_0 + 64827 S("evalwcet2returnin(Ar_0, Ar_1) -> Com_1(evalwcet2stop(Ar_0, Ar_1))", 0-1) = ? S("evalwcet2bb4in(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0 + 1, Ar_1))", 0-0) = 7*Ar_0 + 1323 S("evalwcet2bb4in(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0 + 1, Ar_1))", 0-1) = ? S("evalwcet2bb1in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, Ar_1 + 1))", 0-0) = 7*Ar_0 + 1323 S("evalwcet2bb1in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, Ar_1 + 1))", 0-1) = ? S("evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ Ar_1 >= 10 ]", 0-0) = 7*Ar_0 + 1323 S("evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ Ar_1 >= 10 ]", 0-1) = ? S("evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ 2 >= Ar_0 ]", 0-0) = 7*Ar_0 + 1323 S("evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ 2 >= Ar_0 ]", 0-1) = ? S("evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb1in(Ar_0, Ar_1)) [ Ar_0 >= 3 /\\ 9 >= Ar_1 ]", 0-0) = 7*Ar_0 + 1323 S("evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb1in(Ar_0, Ar_1)) [ Ar_0 >= 3 /\\ 9 >= Ar_1 ]", 0-1) = ? S("evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2returnin(Ar_0, Ar_1)) [ Ar_0 >= 5 ]", 0-0) = 7*Ar_0 + 9261 S("evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2returnin(Ar_0, Ar_1)) [ Ar_0 >= 5 ]", 0-1) = ? S("evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, 0)) [ 4 >= Ar_0 ]", 0-0) = 7*Ar_0 + 1323 S("evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, 0)) [ 4 >= Ar_0 ]", 0-1) = 0 S("evalwcet2entryin(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0, Ar_1))", 0-0) = Ar_0 S("evalwcet2entryin(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0, Ar_1))", 0-1) = Ar_1 S("evalwcet2start(Ar_0, Ar_1) -> Com_1(evalwcet2entryin(Ar_0, Ar_1))", 0-0) = Ar_0 S("evalwcet2start(Ar_0, Ar_1) -> Com_1(evalwcet2entryin(Ar_0, Ar_1))", 0-1) = Ar_1 orients the transitions evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb1in(Ar_0, Ar_1)) [ Ar_0 >= 3 /\ 9 >= Ar_1 ] evalwcet2bb1in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, Ar_1 + 1)) weakly and the transition evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb1in(Ar_0, Ar_1)) [ Ar_0 >= 3 /\ 9 >= Ar_1 ] strictly and produces the following problem: 6: T: (Comp: 1, Cost: 1) evalwcet2start(Ar_0, Ar_1) -> Com_1(evalwcet2entryin(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalwcet2entryin(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0, Ar_1)) (Comp: 2*Ar_0 + 9, Cost: 1) evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, 0)) [ 4 >= Ar_0 ] (Comp: 2, Cost: 1) evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2returnin(Ar_0, Ar_1)) [ Ar_0 >= 5 ] (Comp: 20*Ar_0 + 90, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb1in(Ar_0, Ar_1)) [ Ar_0 >= 3 /\ 9 >= Ar_1 ] (Comp: 2*Ar_0 + 9, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ 2 >= Ar_0 ] (Comp: 6*Ar_0 + 27, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ Ar_1 >= 10 ] (Comp: ?, Cost: 1) evalwcet2bb1in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, Ar_1 + 1)) (Comp: 6*Ar_0 + 27, Cost: 1) evalwcet2bb4in(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0 + 1, Ar_1)) (Comp: 2, Cost: 1) evalwcet2returnin(Ar_0, Ar_1) -> Com_1(evalwcet2stop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalwcet2start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 6 produces the following problem: 7: T: (Comp: 1, Cost: 1) evalwcet2start(Ar_0, Ar_1) -> Com_1(evalwcet2entryin(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalwcet2entryin(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0, Ar_1)) (Comp: 2*Ar_0 + 9, Cost: 1) evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, 0)) [ 4 >= Ar_0 ] (Comp: 2, Cost: 1) evalwcet2bb5in(Ar_0, Ar_1) -> Com_1(evalwcet2returnin(Ar_0, Ar_1)) [ Ar_0 >= 5 ] (Comp: 20*Ar_0 + 90, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb1in(Ar_0, Ar_1)) [ Ar_0 >= 3 /\ 9 >= Ar_1 ] (Comp: 2*Ar_0 + 9, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ 2 >= Ar_0 ] (Comp: 6*Ar_0 + 27, Cost: 1) evalwcet2bb2in(Ar_0, Ar_1) -> Com_1(evalwcet2bb4in(Ar_0, Ar_1)) [ Ar_1 >= 10 ] (Comp: 20*Ar_0 + 90, Cost: 1) evalwcet2bb1in(Ar_0, Ar_1) -> Com_1(evalwcet2bb2in(Ar_0, Ar_1 + 1)) (Comp: 6*Ar_0 + 27, Cost: 1) evalwcet2bb4in(Ar_0, Ar_1) -> Com_1(evalwcet2bb5in(Ar_0 + 1, Ar_1)) (Comp: 2, Cost: 1) evalwcet2returnin(Ar_0, Ar_1) -> Com_1(evalwcet2stop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalwcet2start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 56*Ar_0 + 258 Time: 0.078 sec (SMT: 0.064 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: evalwcet2start 0: evalwcet2start -> evalwcet2entryin : [], cost: 1 1: evalwcet2entryin -> evalwcet2bb5in : [], cost: 1 2: evalwcet2bb5in -> evalwcet2bb2in : B'=0, [ 4>=A ], cost: 1 3: evalwcet2bb5in -> evalwcet2returnin : [ A>=5 ], cost: 1 4: evalwcet2bb2in -> evalwcet2bb1in : [ A>=3 && 9>=B ], cost: 1 5: evalwcet2bb2in -> evalwcet2bb4in : [ 2>=A ], cost: 1 6: evalwcet2bb2in -> evalwcet2bb4in : [ B>=10 ], cost: 1 7: evalwcet2bb1in -> evalwcet2bb2in : B'=1+B, [], cost: 1 8: evalwcet2bb4in -> evalwcet2bb5in : A'=1+A, [], cost: 1 9: evalwcet2returnin -> evalwcet2stop : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: evalwcet2start -> evalwcet2entryin : [], cost: 1 Removed unreachable and leaf rules: Start location: evalwcet2start 0: evalwcet2start -> evalwcet2entryin : [], cost: 1 1: evalwcet2entryin -> evalwcet2bb5in : [], cost: 1 2: evalwcet2bb5in -> evalwcet2bb2in : B'=0, [ 4>=A ], cost: 1 4: evalwcet2bb2in -> evalwcet2bb1in : [ A>=3 && 9>=B ], cost: 1 5: evalwcet2bb2in -> evalwcet2bb4in : [ 2>=A ], cost: 1 6: evalwcet2bb2in -> evalwcet2bb4in : [ B>=10 ], cost: 1 7: evalwcet2bb1in -> evalwcet2bb2in : B'=1+B, [], cost: 1 8: evalwcet2bb4in -> evalwcet2bb5in : A'=1+A, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: evalwcet2start 10: evalwcet2start -> evalwcet2bb5in : [], cost: 2 2: evalwcet2bb5in -> evalwcet2bb2in : B'=0, [ 4>=A ], cost: 1 5: evalwcet2bb2in -> evalwcet2bb4in : [ 2>=A ], cost: 1 6: evalwcet2bb2in -> evalwcet2bb4in : [ B>=10 ], cost: 1 11: evalwcet2bb2in -> evalwcet2bb2in : B'=1+B, [ A>=3 && 9>=B ], cost: 2 8: evalwcet2bb4in -> evalwcet2bb5in : A'=1+A, [], cost: 1 Accelerating simple loops of location 3. Accelerating the following rules: 11: evalwcet2bb2in -> evalwcet2bb2in : B'=1+B, [ A>=3 && 9>=B ], cost: 2 Accelerated rule 11 with metering function 10-B, yielding the new rule 12. Removing the simple loops: 11. Accelerated all simple loops using metering functions (where possible): Start location: evalwcet2start 10: evalwcet2start -> evalwcet2bb5in : [], cost: 2 2: evalwcet2bb5in -> evalwcet2bb2in : B'=0, [ 4>=A ], cost: 1 5: evalwcet2bb2in -> evalwcet2bb4in : [ 2>=A ], cost: 1 6: evalwcet2bb2in -> evalwcet2bb4in : [ B>=10 ], cost: 1 12: evalwcet2bb2in -> evalwcet2bb2in : B'=10, [ A>=3 && 9>=B ], cost: 20-2*B 8: evalwcet2bb4in -> evalwcet2bb5in : A'=1+A, [], cost: 1 Chained accelerated rules (with incoming rules): Start location: evalwcet2start 10: evalwcet2start -> evalwcet2bb5in : [], cost: 2 2: evalwcet2bb5in -> evalwcet2bb2in : B'=0, [ 4>=A ], cost: 1 13: evalwcet2bb5in -> evalwcet2bb2in : B'=10, [ 4>=A && A>=3 ], cost: 21 5: evalwcet2bb2in -> evalwcet2bb4in : [ 2>=A ], cost: 1 6: evalwcet2bb2in -> evalwcet2bb4in : [ B>=10 ], cost: 1 8: evalwcet2bb4in -> evalwcet2bb5in : A'=1+A, [], cost: 1 Eliminated locations (on tree-shaped paths): Start location: evalwcet2start 10: evalwcet2start -> evalwcet2bb5in : [], cost: 2 14: evalwcet2bb5in -> evalwcet2bb4in : B'=0, [ 2>=A ], cost: 2 15: evalwcet2bb5in -> evalwcet2bb4in : B'=10, [ 4>=A && A>=3 ], cost: 22 8: evalwcet2bb4in -> evalwcet2bb5in : A'=1+A, [], cost: 1 Eliminated locations (on tree-shaped paths): Start location: evalwcet2start 10: evalwcet2start -> evalwcet2bb5in : [], cost: 2 16: evalwcet2bb5in -> evalwcet2bb5in : A'=1+A, B'=0, [ 2>=A ], cost: 3 17: evalwcet2bb5in -> evalwcet2bb5in : A'=1+A, B'=10, [ 4>=A && A>=3 ], cost: 23 Accelerating simple loops of location 2. Accelerating the following rules: 16: evalwcet2bb5in -> evalwcet2bb5in : A'=1+A, B'=0, [ 2>=A ], cost: 3 17: evalwcet2bb5in -> evalwcet2bb5in : A'=1+A, B'=10, [ 4>=A && A>=3 ], cost: 23 Accelerated rule 16 with metering function 3-A, yielding the new rule 18. Accelerated rule 17 with metering function 5-A, yielding the new rule 19. Removing the simple loops: 16 17. Accelerated all simple loops using metering functions (where possible): Start location: evalwcet2start 10: evalwcet2start -> evalwcet2bb5in : [], cost: 2 18: evalwcet2bb5in -> evalwcet2bb5in : A'=3, B'=0, [ 2>=A ], cost: 9-3*A 19: evalwcet2bb5in -> evalwcet2bb5in : A'=5, B'=10, [ 4>=A && A>=3 ], cost: 115-23*A Chained accelerated rules (with incoming rules): Start location: evalwcet2start 10: evalwcet2start -> evalwcet2bb5in : [], cost: 2 20: evalwcet2start -> evalwcet2bb5in : A'=3, B'=0, [ 2>=A ], cost: 11-3*A 21: evalwcet2start -> evalwcet2bb5in : A'=5, B'=10, [ 4>=A && A>=3 ], cost: 117-23*A Removed unreachable locations (and leaf rules with constant cost): Start location: evalwcet2start 20: evalwcet2start -> evalwcet2bb5in : A'=3, B'=0, [ 2>=A ], cost: 11-3*A 21: evalwcet2start -> evalwcet2bb5in : A'=5, B'=10, [ 4>=A && A>=3 ], cost: 117-23*A ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: evalwcet2start 20: evalwcet2start -> evalwcet2bb5in : A'=3, B'=0, [ 2>=A ], cost: 11-3*A 21: evalwcet2start -> evalwcet2bb5in : A'=5, B'=10, [ 4>=A && A>=3 ], cost: 117-23*A Computing asymptotic complexity for rule 20 Solved the limit problem by the following transformations: Created initial limit problem: 3-A (+/+!), 11-3*A (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==-n} resulting limit problem: [solved] Solution: A / -n Resulting cost 11+3*n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 11+3*n Rule cost: 11-3*A Rule guard: [ 2>=A ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)