/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^2, n^2). (0) CpxIntTrs (1) Koat Proof [FINISHED, 11 ms] (2) BOUNDS(1, n^2) (3) Loat Proof [FINISHED, 491 ms] (4) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: evalaxstart(A, B, C) -> Com_1(evalaxentryin(A, B, C)) :|: TRUE evalaxentryin(A, B, C) -> Com_1(evalaxbbin(0, B, C)) :|: TRUE evalaxbbin(A, B, C) -> Com_1(evalaxbb2in(A, 0, C)) :|: TRUE evalaxbb2in(A, B, C) -> Com_1(evalaxbb1in(A, B, C)) :|: C >= 2 + B evalaxbb2in(A, B, C) -> Com_1(evalaxbb3in(A, B, C)) :|: B + 1 >= C evalaxbb1in(A, B, C) -> Com_1(evalaxbb2in(A, B + 1, C)) :|: TRUE evalaxbb3in(A, B, C) -> Com_1(evalaxbbin(A + 1, B, C)) :|: B + 1 >= C && C >= 3 + A evalaxbb3in(A, B, C) -> Com_1(evalaxreturnin(A, B, C)) :|: C >= 2 + B evalaxbb3in(A, B, C) -> Com_1(evalaxreturnin(A, B, C)) :|: A + 2 >= C evalaxreturnin(A, B, C) -> Com_1(evalaxstop(A, B, C)) :|: TRUE The start-symbols are:[evalaxstart_3] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 5*Ar_2 + 2*Ar_2^2 + 8) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalaxstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxentryin(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalaxentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalaxbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, 0, Ar_2)) (Comp: ?, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ] (Comp: ?, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 ] (Comp: ?, Cost: 1) evalaxbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, Ar_1 + 1, Ar_2)) (Comp: ?, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(Ar_0 + 1, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 /\ Ar_2 >= Ar_0 + 3 ] (Comp: ?, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ] (Comp: ?, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 + 2 >= Ar_2 ] (Comp: ?, Cost: 1) evalaxreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Testing for reachability in the complexity graph removes the following transition from problem 1: evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ] We thus obtain the following problem: 2: T: (Comp: ?, Cost: 1) evalaxreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstop(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 + 2 >= Ar_2 ] (Comp: ?, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(Ar_0 + 1, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 /\ Ar_2 >= Ar_0 + 3 ] (Comp: ?, Cost: 1) evalaxbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, Ar_1 + 1, Ar_2)) (Comp: ?, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 ] (Comp: ?, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ] (Comp: ?, Cost: 1) evalaxbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, 0, Ar_2)) (Comp: ?, Cost: 1) evalaxentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalaxstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxentryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: ?, Cost: 1) evalaxreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstop(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 + 2 >= Ar_2 ] (Comp: ?, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(Ar_0 + 1, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 /\ Ar_2 >= Ar_0 + 3 ] (Comp: ?, Cost: 1) evalaxbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, Ar_1 + 1, Ar_2)) (Comp: ?, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 ] (Comp: ?, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ] (Comp: ?, Cost: 1) evalaxbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, 0, Ar_2)) (Comp: 1, Cost: 1) evalaxentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalaxstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxentryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalaxreturnin) = 1 Pol(evalaxstop) = 0 Pol(evalaxbb3in) = 2 Pol(evalaxbbin) = 2 Pol(evalaxbb1in) = 2 Pol(evalaxbb2in) = 2 Pol(evalaxentryin) = 2 Pol(evalaxstart) = 2 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalaxreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstop(Ar_0, Ar_1, Ar_2)) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 + 2 >= Ar_2 ] strictly and produces the following problem: 4: T: (Comp: 2, Cost: 1) evalaxreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstop(Ar_0, Ar_1, Ar_2)) (Comp: 2, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 + 2 >= Ar_2 ] (Comp: ?, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(Ar_0 + 1, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 /\ Ar_2 >= Ar_0 + 3 ] (Comp: ?, Cost: 1) evalaxbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, Ar_1 + 1, Ar_2)) (Comp: ?, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 ] (Comp: ?, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ] (Comp: ?, Cost: 1) evalaxbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, 0, Ar_2)) (Comp: 1, Cost: 1) evalaxentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalaxstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxentryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalaxreturnin) = -V_1 + V_3 Pol(evalaxstop) = -V_1 + V_3 Pol(evalaxbb3in) = -V_1 + V_3 Pol(evalaxbbin) = -V_1 + V_3 Pol(evalaxbb1in) = -V_1 + V_3 Pol(evalaxbb2in) = -V_1 + V_3 Pol(evalaxentryin) = V_3 Pol(evalaxstart) = V_3 Pol(koat_start) = V_3 orients all transitions weakly and the transition evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(Ar_0 + 1, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 /\ Ar_2 >= Ar_0 + 3 ] strictly and produces the following problem: 5: T: (Comp: 2, Cost: 1) evalaxreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstop(Ar_0, Ar_1, Ar_2)) (Comp: 2, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 + 2 >= Ar_2 ] (Comp: Ar_2, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(Ar_0 + 1, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 /\ Ar_2 >= Ar_0 + 3 ] (Comp: ?, Cost: 1) evalaxbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, Ar_1 + 1, Ar_2)) (Comp: ?, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 ] (Comp: ?, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ] (Comp: ?, Cost: 1) evalaxbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, 0, Ar_2)) (Comp: 1, Cost: 1) evalaxentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalaxstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxentryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 5 produces the following problem: 6: T: (Comp: 2, Cost: 1) evalaxreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstop(Ar_0, Ar_1, Ar_2)) (Comp: 2, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 + 2 >= Ar_2 ] (Comp: Ar_2, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(Ar_0 + 1, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 /\ Ar_2 >= Ar_0 + 3 ] (Comp: ?, Cost: 1) evalaxbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, Ar_1 + 1, Ar_2)) (Comp: ?, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 ] (Comp: ?, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ] (Comp: Ar_2 + 1, Cost: 1) evalaxbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, 0, Ar_2)) (Comp: 1, Cost: 1) evalaxentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalaxstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxentryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalaxbb2in) = 1 Pol(evalaxbb3in) = 0 Pol(evalaxbb1in) = 1 and size complexities S("koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ]", 0-1) = Ar_1 S("koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ]", 0-2) = Ar_2 S("evalaxstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxentryin(Ar_0, Ar_1, Ar_2))", 0-0) = Ar_0 S("evalaxstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxentryin(Ar_0, Ar_1, Ar_2))", 0-1) = Ar_1 S("evalaxstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxentryin(Ar_0, Ar_1, Ar_2))", 0-2) = Ar_2 S("evalaxentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(0, Ar_1, Ar_2))", 0-0) = 0 S("evalaxentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(0, Ar_1, Ar_2))", 0-1) = Ar_1 S("evalaxentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(0, Ar_1, Ar_2))", 0-2) = Ar_2 S("evalaxbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, 0, Ar_2))", 0-0) = Ar_2 S("evalaxbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, 0, Ar_2))", 0-1) = 0 S("evalaxbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, 0, Ar_2))", 0-2) = Ar_2 S("evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ]", 0-0) = Ar_2 S("evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ]", 0-1) = ? S("evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ]", 0-2) = Ar_2 S("evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 ]", 0-0) = Ar_2 S("evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 ]", 0-1) = ? S("evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 ]", 0-2) = Ar_2 S("evalaxbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, Ar_1 + 1, Ar_2))", 0-0) = Ar_2 S("evalaxbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, Ar_1 + 1, Ar_2))", 0-1) = ? S("evalaxbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, Ar_1 + 1, Ar_2))", 0-2) = Ar_2 S("evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(Ar_0 + 1, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 /\\ Ar_2 >= Ar_0 + 3 ]", 0-0) = Ar_2 S("evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(Ar_0 + 1, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 /\\ Ar_2 >= Ar_0 + 3 ]", 0-1) = ? S("evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(Ar_0 + 1, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 /\\ Ar_2 >= Ar_0 + 3 ]", 0-2) = Ar_2 S("evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 + 2 >= Ar_2 ]", 0-0) = Ar_2 S("evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 + 2 >= Ar_2 ]", 0-1) = ? S("evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 + 2 >= Ar_2 ]", 0-2) = Ar_2 S("evalaxreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstop(Ar_0, Ar_1, Ar_2))", 0-0) = Ar_2 S("evalaxreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstop(Ar_0, Ar_1, Ar_2))", 0-1) = ? S("evalaxreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstop(Ar_0, Ar_1, Ar_2))", 0-2) = Ar_2 orients the transitions evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 ] evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ] evalaxbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, Ar_1 + 1, Ar_2)) weakly and the transition evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 ] strictly and produces the following problem: 7: T: (Comp: 2, Cost: 1) evalaxreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstop(Ar_0, Ar_1, Ar_2)) (Comp: 2, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 + 2 >= Ar_2 ] (Comp: Ar_2, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(Ar_0 + 1, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 /\ Ar_2 >= Ar_0 + 3 ] (Comp: ?, Cost: 1) evalaxbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, Ar_1 + 1, Ar_2)) (Comp: Ar_2 + 1, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 ] (Comp: ?, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ] (Comp: Ar_2 + 1, Cost: 1) evalaxbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, 0, Ar_2)) (Comp: 1, Cost: 1) evalaxentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalaxstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxentryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalaxbb2in) = -V_2 + V_3 Pol(evalaxbb1in) = -V_2 + V_3 - 1 and size complexities S("koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ]", 0-1) = Ar_1 S("koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ]", 0-2) = Ar_2 S("evalaxstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxentryin(Ar_0, Ar_1, Ar_2))", 0-0) = Ar_0 S("evalaxstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxentryin(Ar_0, Ar_1, Ar_2))", 0-1) = Ar_1 S("evalaxstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxentryin(Ar_0, Ar_1, Ar_2))", 0-2) = Ar_2 S("evalaxentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(0, Ar_1, Ar_2))", 0-0) = 0 S("evalaxentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(0, Ar_1, Ar_2))", 0-1) = Ar_1 S("evalaxentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(0, Ar_1, Ar_2))", 0-2) = Ar_2 S("evalaxbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, 0, Ar_2))", 0-0) = Ar_2 S("evalaxbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, 0, Ar_2))", 0-1) = 0 S("evalaxbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, 0, Ar_2))", 0-2) = Ar_2 S("evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ]", 0-0) = Ar_2 S("evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ]", 0-1) = ? S("evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ]", 0-2) = Ar_2 S("evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 ]", 0-0) = Ar_2 S("evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 ]", 0-1) = ? S("evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 ]", 0-2) = Ar_2 S("evalaxbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, Ar_1 + 1, Ar_2))", 0-0) = Ar_2 S("evalaxbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, Ar_1 + 1, Ar_2))", 0-1) = ? S("evalaxbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, Ar_1 + 1, Ar_2))", 0-2) = Ar_2 S("evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(Ar_0 + 1, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 /\\ Ar_2 >= Ar_0 + 3 ]", 0-0) = Ar_2 S("evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(Ar_0 + 1, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 /\\ Ar_2 >= Ar_0 + 3 ]", 0-1) = ? S("evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(Ar_0 + 1, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 /\\ Ar_2 >= Ar_0 + 3 ]", 0-2) = Ar_2 S("evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 + 2 >= Ar_2 ]", 0-0) = Ar_2 S("evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 + 2 >= Ar_2 ]", 0-1) = ? S("evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 + 2 >= Ar_2 ]", 0-2) = Ar_2 S("evalaxreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstop(Ar_0, Ar_1, Ar_2))", 0-0) = Ar_2 S("evalaxreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstop(Ar_0, Ar_1, Ar_2))", 0-1) = ? S("evalaxreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstop(Ar_0, Ar_1, Ar_2))", 0-2) = Ar_2 orients the transitions evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ] evalaxbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, Ar_1 + 1, Ar_2)) weakly and the transition evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ] strictly and produces the following problem: 8: T: (Comp: 2, Cost: 1) evalaxreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstop(Ar_0, Ar_1, Ar_2)) (Comp: 2, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 + 2 >= Ar_2 ] (Comp: Ar_2, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(Ar_0 + 1, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 /\ Ar_2 >= Ar_0 + 3 ] (Comp: ?, Cost: 1) evalaxbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, Ar_1 + 1, Ar_2)) (Comp: Ar_2 + 1, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 ] (Comp: Ar_2^2 + Ar_2, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ] (Comp: Ar_2 + 1, Cost: 1) evalaxbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, 0, Ar_2)) (Comp: 1, Cost: 1) evalaxentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalaxstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxentryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 8 produces the following problem: 9: T: (Comp: 2, Cost: 1) evalaxreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstop(Ar_0, Ar_1, Ar_2)) (Comp: 2, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 + 2 >= Ar_2 ] (Comp: Ar_2, Cost: 1) evalaxbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(Ar_0 + 1, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 /\ Ar_2 >= Ar_0 + 3 ] (Comp: Ar_2^2 + Ar_2, Cost: 1) evalaxbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, Ar_1 + 1, Ar_2)) (Comp: Ar_2 + 1, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 + 1 >= Ar_2 ] (Comp: Ar_2^2 + Ar_2, Cost: 1) evalaxbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 + 2 ] (Comp: Ar_2 + 1, Cost: 1) evalaxbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbb2in(Ar_0, 0, Ar_2)) (Comp: 1, Cost: 1) evalaxentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxbbin(0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalaxstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxentryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalaxstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 5*Ar_2 + 2*Ar_2^2 + 8 Time: 0.087 sec (SMT: 0.068 sec) ---------------------------------------- (2) BOUNDS(1, n^2) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: evalaxstart 0: evalaxstart -> evalaxentryin : [], cost: 1 1: evalaxentryin -> evalaxbbin : A'=0, [], cost: 1 2: evalaxbbin -> evalaxbb2in : B'=0, [], cost: 1 3: evalaxbb2in -> evalaxbb1in : [ C>=2+B ], cost: 1 4: evalaxbb2in -> evalaxbb3in : [ 1+B>=C ], cost: 1 5: evalaxbb1in -> evalaxbb2in : B'=1+B, [], cost: 1 6: evalaxbb3in -> evalaxbbin : A'=1+A, [ 1+B>=C && C>=3+A ], cost: 1 7: evalaxbb3in -> evalaxreturnin : [ C>=2+B ], cost: 1 8: evalaxbb3in -> evalaxreturnin : [ 2+A>=C ], cost: 1 9: evalaxreturnin -> evalaxstop : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: evalaxstart -> evalaxentryin : [], cost: 1 Removed unreachable and leaf rules: Start location: evalaxstart 0: evalaxstart -> evalaxentryin : [], cost: 1 1: evalaxentryin -> evalaxbbin : A'=0, [], cost: 1 2: evalaxbbin -> evalaxbb2in : B'=0, [], cost: 1 3: evalaxbb2in -> evalaxbb1in : [ C>=2+B ], cost: 1 4: evalaxbb2in -> evalaxbb3in : [ 1+B>=C ], cost: 1 5: evalaxbb1in -> evalaxbb2in : B'=1+B, [], cost: 1 6: evalaxbb3in -> evalaxbbin : A'=1+A, [ 1+B>=C && C>=3+A ], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: evalaxstart 10: evalaxstart -> evalaxbbin : A'=0, [], cost: 2 2: evalaxbbin -> evalaxbb2in : B'=0, [], cost: 1 11: evalaxbb2in -> evalaxbb2in : B'=1+B, [ C>=2+B ], cost: 2 12: evalaxbb2in -> evalaxbbin : A'=1+A, [ 1+B>=C && C>=3+A ], cost: 2 Accelerating simple loops of location 3. Accelerating the following rules: 11: evalaxbb2in -> evalaxbb2in : B'=1+B, [ C>=2+B ], cost: 2 Accelerated rule 11 with metering function -1+C-B, yielding the new rule 13. Removing the simple loops: 11. Accelerated all simple loops using metering functions (where possible): Start location: evalaxstart 10: evalaxstart -> evalaxbbin : A'=0, [], cost: 2 2: evalaxbbin -> evalaxbb2in : B'=0, [], cost: 1 12: evalaxbb2in -> evalaxbbin : A'=1+A, [ 1+B>=C && C>=3+A ], cost: 2 13: evalaxbb2in -> evalaxbb2in : B'=-1+C, [ C>=2+B ], cost: -2+2*C-2*B Chained accelerated rules (with incoming rules): Start location: evalaxstart 10: evalaxstart -> evalaxbbin : A'=0, [], cost: 2 2: evalaxbbin -> evalaxbb2in : B'=0, [], cost: 1 14: evalaxbbin -> evalaxbb2in : B'=-1+C, [ C>=2 ], cost: -1+2*C 12: evalaxbb2in -> evalaxbbin : A'=1+A, [ 1+B>=C && C>=3+A ], cost: 2 Eliminated locations (on tree-shaped paths): Start location: evalaxstart 10: evalaxstart -> evalaxbbin : A'=0, [], cost: 2 15: evalaxbbin -> evalaxbbin : A'=1+A, B'=0, [ 1>=C && C>=3+A ], cost: 3 16: evalaxbbin -> evalaxbbin : A'=1+A, B'=-1+C, [ C>=2 && C>=3+A ], cost: 1+2*C Accelerating simple loops of location 2. Accelerating the following rules: 15: evalaxbbin -> evalaxbbin : A'=1+A, B'=0, [ 1>=C && C>=3+A ], cost: 3 16: evalaxbbin -> evalaxbbin : A'=1+A, B'=-1+C, [ C>=2 && C>=3+A ], cost: 1+2*C Accelerated rule 15 with metering function -2+C-A, yielding the new rule 17. Accelerated rule 16 with metering function -2+C-A, yielding the new rule 18. Removing the simple loops: 15 16. Accelerated all simple loops using metering functions (where possible): Start location: evalaxstart 10: evalaxstart -> evalaxbbin : A'=0, [], cost: 2 17: evalaxbbin -> evalaxbbin : A'=-2+C, B'=0, [ 1>=C && C>=3+A ], cost: -6+3*C-3*A 18: evalaxbbin -> evalaxbbin : A'=-2+C, B'=-1+C, [ C>=2 && C>=3+A ], cost: -2+C-A+2*C*(-2+C-A) Chained accelerated rules (with incoming rules): Start location: evalaxstart 10: evalaxstart -> evalaxbbin : A'=0, [], cost: 2 19: evalaxstart -> evalaxbbin : A'=-2+C, B'=-1+C, [ C>=3 ], cost: C+2*(-2+C)*C Removed unreachable locations (and leaf rules with constant cost): Start location: evalaxstart 19: evalaxstart -> evalaxbbin : A'=-2+C, B'=-1+C, [ C>=3 ], cost: C+2*(-2+C)*C ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: evalaxstart 19: evalaxstart -> evalaxbbin : A'=-2+C, B'=-1+C, [ C>=3 ], cost: C+2*(-2+C)*C Computing asymptotic complexity for rule 19 Solved the limit problem by the following transformations: Created initial limit problem: -2+C (+/+!), -3*C+2*C^2 (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {C==n} resulting limit problem: [solved] Solution: C / n Resulting cost -3*n+2*n^2 has complexity: Poly(n^2) Found new complexity Poly(n^2). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^2) Cpx degree: 2 Solved cost: -3*n+2*n^2 Rule cost: C+2*(-2+C)*C Rule guard: [ C>=3 ] WORST_CASE(Omega(n^2),?) ---------------------------------------- (4) BOUNDS(n^2, INF)