/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 143 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 518 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: evalSimpleMultiplestart(A, B, C, D) -> Com_1(evalSimpleMultipleentryin(A, B, C, D)) :|: TRUE evalSimpleMultipleentryin(A, B, C, D) -> Com_1(evalSimpleMultiplebb3in(0, 0, C, D)) :|: TRUE evalSimpleMultiplebb3in(A, B, C, D) -> Com_1(evalSimpleMultiplebbin(A, B, C, D)) :|: C >= B + 1 evalSimpleMultiplebb3in(A, B, C, D) -> Com_1(evalSimpleMultiplereturnin(A, B, C, D)) :|: B >= C evalSimpleMultiplebbin(A, B, C, D) -> Com_1(evalSimpleMultiplebb1in(A, B, C, D)) :|: D >= A + 1 evalSimpleMultiplebbin(A, B, C, D) -> Com_1(evalSimpleMultiplebb2in(A, B, C, D)) :|: A >= D evalSimpleMultiplebb1in(A, B, C, D) -> Com_1(evalSimpleMultiplebb3in(A + 1, B, C, D)) :|: TRUE evalSimpleMultiplebb2in(A, B, C, D) -> Com_1(evalSimpleMultiplebb3in(A, B + 1, C, D)) :|: TRUE evalSimpleMultiplereturnin(A, B, C, D) -> Com_1(evalSimpleMultiplestop(A, B, C, D)) :|: TRUE The start-symbols are:[evalSimpleMultiplestart_4] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 6*Ar_2 + 3*Ar_3 + 7) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultipleentryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalSimpleMultipleentryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(0, 0, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_2 ] (Comp: ?, Cost: 1) evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_3 ] (Comp: ?, Cost: 1) evalSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultipleentryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalSimpleMultipleentryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(0, 0, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_2 ] (Comp: ?, Cost: 1) evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_3 ] (Comp: ?, Cost: 1) evalSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalSimpleMultiplestart) = 2 Pol(evalSimpleMultipleentryin) = 2 Pol(evalSimpleMultiplebb3in) = 2 Pol(evalSimpleMultiplebbin) = 2 Pol(evalSimpleMultiplereturnin) = 1 Pol(evalSimpleMultiplebb1in) = 2 Pol(evalSimpleMultiplebb2in) = 2 Pol(evalSimpleMultiplestop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) evalSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_2 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultipleentryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalSimpleMultipleentryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(0, 0, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_1 + 1 ] (Comp: 2, Cost: 1) evalSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_2 ] (Comp: ?, Cost: 1) evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_3 ] (Comp: ?, Cost: 1) evalSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) (Comp: 2, Cost: 1) evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalSimpleMultiplestart) = V_4 Pol(evalSimpleMultipleentryin) = V_4 Pol(evalSimpleMultiplebb3in) = -V_1 + V_4 Pol(evalSimpleMultiplebbin) = -V_1 + V_4 Pol(evalSimpleMultiplereturnin) = -V_1 + V_4 Pol(evalSimpleMultiplebb1in) = -V_1 + V_4 - 1 Pol(evalSimpleMultiplebb2in) = -V_1 + V_4 Pol(evalSimpleMultiplestop) = -V_1 + V_4 Pol(koat_start) = V_4 orients all transitions weakly and the transition evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_0 + 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) evalSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultipleentryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalSimpleMultipleentryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(0, 0, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_1 + 1 ] (Comp: 2, Cost: 1) evalSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_2 ] (Comp: Ar_3, Cost: 1) evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_3 ] (Comp: ?, Cost: 1) evalSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) (Comp: 2, Cost: 1) evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 4 produces the following problem: 5: T: (Comp: 1, Cost: 1) evalSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultipleentryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalSimpleMultipleentryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(0, 0, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_1 + 1 ] (Comp: 2, Cost: 1) evalSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_2 ] (Comp: Ar_3, Cost: 1) evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_3 ] (Comp: Ar_3, Cost: 1) evalSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) (Comp: 2, Cost: 1) evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 5 to obtain the following invariants: For symbol evalSimpleMultiplebb1in: X_4 - 1 >= 0 /\ X_3 + X_4 - 2 >= 0 /\ X_2 + X_4 - 1 >= 0 /\ X_1 + X_4 - 1 >= 0 /\ -X_1 + X_4 - 1 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ -X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 - 1 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 For symbol evalSimpleMultiplebb2in: X_1 - X_4 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ -X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 - 1 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 For symbol evalSimpleMultiplebb3in: X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 For symbol evalSimpleMultiplebbin: X_3 - 1 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ -X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 - 1 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 For symbol evalSimpleMultiplereturnin: X_2 - X_3 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 This yielded the following problem: 6: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_2 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 ] (Comp: ?, Cost: 1) evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) [ Ar_0 - Ar_3 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ -Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 ] (Comp: Ar_3, Cost: 1) evalSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) [ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 2 >= 0 /\ Ar_1 + Ar_3 - 1 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ -Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 ] (Comp: ?, Cost: 1) evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ -Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_0 >= Ar_3 ] (Comp: Ar_3, Cost: 1) evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ -Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_3 >= Ar_0 + 1 ] (Comp: 2, Cost: 1) evalSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_1 >= Ar_2 ] (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_2 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) evalSimpleMultipleentryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(0, 0, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultipleentryin(Ar_0, Ar_1, Ar_2, Ar_3)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = 2*V_3 Pol(evalSimpleMultiplestart) = 2*V_3 Pol(evalSimpleMultiplereturnin) = -2*V_2 + 2*V_3 Pol(evalSimpleMultiplestop) = -2*V_2 + 2*V_3 Pol(evalSimpleMultiplebb2in) = -2*V_2 + 2*V_3 - 1 Pol(evalSimpleMultiplebb3in) = -2*V_2 + 2*V_3 Pol(evalSimpleMultiplebb1in) = -2*V_2 + 2*V_3 Pol(evalSimpleMultiplebbin) = -2*V_2 + 2*V_3 Pol(evalSimpleMultipleentryin) = 2*V_3 orients all transitions weakly and the transitions evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ -Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_0 >= Ar_3 ] evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) [ Ar_0 - Ar_3 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ -Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 ] strictly and produces the following problem: 7: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_2 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 ] (Comp: 2*Ar_2, Cost: 1) evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) [ Ar_0 - Ar_3 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ -Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 ] (Comp: Ar_3, Cost: 1) evalSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) [ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 2 >= 0 /\ Ar_1 + Ar_3 - 1 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ -Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 ] (Comp: 2*Ar_2, Cost: 1) evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ -Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_0 >= Ar_3 ] (Comp: Ar_3, Cost: 1) evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ -Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_3 >= Ar_0 + 1 ] (Comp: 2, Cost: 1) evalSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_1 >= Ar_2 ] (Comp: ?, Cost: 1) evalSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_2 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) evalSimpleMultipleentryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(0, 0, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultipleentryin(Ar_0, Ar_1, Ar_2, Ar_3)) start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 7 produces the following problem: 8: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplestop(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 - Ar_2 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 ] (Comp: 2*Ar_2, Cost: 1) evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) [ Ar_0 - Ar_3 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ -Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 ] (Comp: Ar_3, Cost: 1) evalSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(Ar_0 + 1, Ar_1, Ar_2, Ar_3)) [ Ar_3 - 1 >= 0 /\ Ar_2 + Ar_3 - 2 >= 0 /\ Ar_1 + Ar_3 - 1 >= 0 /\ Ar_0 + Ar_3 - 1 >= 0 /\ -Ar_0 + Ar_3 - 1 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ -Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 ] (Comp: 2*Ar_2, Cost: 1) evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ -Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_0 >= Ar_3 ] (Comp: Ar_3, Cost: 1) evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ -Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_3 >= Ar_0 + 1 ] (Comp: 2, Cost: 1) evalSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplereturnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_1 >= Ar_2 ] (Comp: Ar_3 + 2*Ar_2 + 1, Cost: 1) evalSimpleMultiplebb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= 0 /\ Ar_0 + Ar_1 >= 0 /\ Ar_0 >= 0 /\ Ar_2 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) evalSimpleMultipleentryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultiplebb3in(0, 0, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalSimpleMultiplestart(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalSimpleMultipleentryin(Ar_0, Ar_1, Ar_2, Ar_3)) start location: koat_start leaf cost: 0 Complexity upper bound 6*Ar_2 + 3*Ar_3 + 7 Time: 0.194 sec (SMT: 0.155 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: evalSimpleMultiplestart 0: evalSimpleMultiplestart -> evalSimpleMultipleentryin : [], cost: 1 1: evalSimpleMultipleentryin -> evalSimpleMultiplebb3in : A'=0, B'=0, [], cost: 1 2: evalSimpleMultiplebb3in -> evalSimpleMultiplebbin : [ C>=1+B ], cost: 1 3: evalSimpleMultiplebb3in -> evalSimpleMultiplereturnin : [ B>=C ], cost: 1 4: evalSimpleMultiplebbin -> evalSimpleMultiplebb1in : [ D>=1+A ], cost: 1 5: evalSimpleMultiplebbin -> evalSimpleMultiplebb2in : [ A>=D ], cost: 1 6: evalSimpleMultiplebb1in -> evalSimpleMultiplebb3in : A'=1+A, [], cost: 1 7: evalSimpleMultiplebb2in -> evalSimpleMultiplebb3in : B'=1+B, [], cost: 1 8: evalSimpleMultiplereturnin -> evalSimpleMultiplestop : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: evalSimpleMultiplestart -> evalSimpleMultipleentryin : [], cost: 1 Removed unreachable and leaf rules: Start location: evalSimpleMultiplestart 0: evalSimpleMultiplestart -> evalSimpleMultipleentryin : [], cost: 1 1: evalSimpleMultipleentryin -> evalSimpleMultiplebb3in : A'=0, B'=0, [], cost: 1 2: evalSimpleMultiplebb3in -> evalSimpleMultiplebbin : [ C>=1+B ], cost: 1 4: evalSimpleMultiplebbin -> evalSimpleMultiplebb1in : [ D>=1+A ], cost: 1 5: evalSimpleMultiplebbin -> evalSimpleMultiplebb2in : [ A>=D ], cost: 1 6: evalSimpleMultiplebb1in -> evalSimpleMultiplebb3in : A'=1+A, [], cost: 1 7: evalSimpleMultiplebb2in -> evalSimpleMultiplebb3in : B'=1+B, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: evalSimpleMultiplestart 9: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=0, B'=0, [], cost: 2 2: evalSimpleMultiplebb3in -> evalSimpleMultiplebbin : [ C>=1+B ], cost: 1 10: evalSimpleMultiplebbin -> evalSimpleMultiplebb3in : A'=1+A, [ D>=1+A ], cost: 2 11: evalSimpleMultiplebbin -> evalSimpleMultiplebb3in : B'=1+B, [ A>=D ], cost: 2 Eliminated locations (on tree-shaped paths): Start location: evalSimpleMultiplestart 9: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=0, B'=0, [], cost: 2 12: evalSimpleMultiplebb3in -> evalSimpleMultiplebb3in : A'=1+A, [ C>=1+B && D>=1+A ], cost: 3 13: evalSimpleMultiplebb3in -> evalSimpleMultiplebb3in : B'=1+B, [ C>=1+B && A>=D ], cost: 3 Accelerating simple loops of location 2. Accelerating the following rules: 12: evalSimpleMultiplebb3in -> evalSimpleMultiplebb3in : A'=1+A, [ C>=1+B && D>=1+A ], cost: 3 13: evalSimpleMultiplebb3in -> evalSimpleMultiplebb3in : B'=1+B, [ C>=1+B && A>=D ], cost: 3 Accelerated rule 12 with metering function D-A, yielding the new rule 14. Accelerated rule 13 with metering function C-B, yielding the new rule 15. Removing the simple loops: 12 13. Accelerated all simple loops using metering functions (where possible): Start location: evalSimpleMultiplestart 9: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=0, B'=0, [], cost: 2 14: evalSimpleMultiplebb3in -> evalSimpleMultiplebb3in : A'=D, [ C>=1+B && D>=1+A ], cost: 3*D-3*A 15: evalSimpleMultiplebb3in -> evalSimpleMultiplebb3in : B'=C, [ C>=1+B && A>=D ], cost: 3*C-3*B Chained accelerated rules (with incoming rules): Start location: evalSimpleMultiplestart 9: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=0, B'=0, [], cost: 2 16: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=D, B'=0, [ C>=1 && D>=1 ], cost: 2+3*D 17: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=0, B'=C, [ C>=1 && 0>=D ], cost: 2+3*C Removed unreachable locations (and leaf rules with constant cost): Start location: evalSimpleMultiplestart 16: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=D, B'=0, [ C>=1 && D>=1 ], cost: 2+3*D 17: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=0, B'=C, [ C>=1 && 0>=D ], cost: 2+3*C ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: evalSimpleMultiplestart 16: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=D, B'=0, [ C>=1 && D>=1 ], cost: 2+3*D 17: evalSimpleMultiplestart -> evalSimpleMultiplebb3in : A'=0, B'=C, [ C>=1 && 0>=D ], cost: 2+3*C Computing asymptotic complexity for rule 16 Solved the limit problem by the following transformations: Created initial limit problem: C (+/+!), D (+/+!), 2+3*D (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {C==1,D==n} resulting limit problem: [solved] Solution: C / 1 D / n Resulting cost 2+3*n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 2+3*n Rule cost: 2+3*D Rule guard: [ C>=1 && D>=1 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)