/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 2 + Arg_0 + -1 * Arg_1) + nat(2 + Arg_0 + -1 * Arg_1) + nat(1 + -1 * Arg_1 + Arg_2)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 333 ms] (2) BOUNDS(1, max(1, 2 + Arg_0 + -1 * Arg_1) + nat(2 + Arg_0 + -1 * Arg_1) + nat(1 + -1 * Arg_1 + Arg_2)) (3) Loat Proof [FINISHED, 428 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval1(A, B, C) -> Com_1(eval2(A, B, C)) :|: A >= B + 1 eval2(A, B, C) -> Com_1(eval2(A, B, C - 1)) :|: A >= B + 1 && C >= B + 1 eval2(A, B, C) -> Com_1(eval1(A - 1, B, C)) :|: A >= B + 1 && B >= C start(A, B, C) -> Com_1(eval1(A, B, C)) :|: TRUE The start-symbols are:[start_3] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, 1+max([0, 1+Arg_0-Arg_1])+max([0, 2+Arg_0-Arg_1])+max([0, 1+Arg_2-Arg_1]) {O(n)}) Initial Complexity Problem: Start: start Program_Vars: Arg_0, Arg_1, Arg_2 Temp_Vars: Locations: eval1, eval2, start Transitions: 0: eval1->eval2 2: eval2->eval1 1: eval2->eval2 3: start->eval1 Timebounds: Overall timebound: 1+max([0, 1+Arg_0-Arg_1])+max([0, 2+Arg_0-Arg_1])+max([0, 1+Arg_2-Arg_1]) {O(n)} 0: eval1->eval2: max([0, 2+Arg_0-Arg_1]) {O(n)} 1: eval2->eval2: max([0, 1+Arg_2-Arg_1]) {O(n)} 2: eval2->eval1: max([0, 1+Arg_0-Arg_1]) {O(n)} 3: start->eval1: 1 {O(1)} Costbounds: Overall costbound: 1+max([0, 1+Arg_0-Arg_1])+max([0, 2+Arg_0-Arg_1])+max([0, 1+Arg_2-Arg_1]) {O(n)} 0: eval1->eval2: max([0, 2+Arg_0-Arg_1]) {O(n)} 1: eval2->eval2: max([0, 1+Arg_2-Arg_1]) {O(n)} 2: eval2->eval1: max([0, 1+Arg_0-Arg_1]) {O(n)} 3: start->eval1: 1 {O(1)} Sizebounds: `Lower: 0: eval1->eval2, Arg_0: Arg_0-max([0, 1+Arg_0-Arg_1]) {O(n)} 0: eval1->eval2, Arg_1: Arg_1 {O(n)} 0: eval1->eval2, Arg_2: Arg_2-max([0, 1+Arg_2-Arg_1]) {O(n)} 1: eval2->eval2, Arg_0: Arg_0-max([0, 1+Arg_0-Arg_1]) {O(n)} 1: eval2->eval2, Arg_1: Arg_1 {O(n)} 1: eval2->eval2, Arg_2: Arg_2-max([0, 1+Arg_2-Arg_1]) {O(n)} 2: eval2->eval1, Arg_0: Arg_0-max([0, 1+Arg_0-Arg_1]) {O(n)} 2: eval2->eval1, Arg_1: Arg_1 {O(n)} 2: eval2->eval1, Arg_2: Arg_2-max([0, 1+Arg_2-Arg_1]) {O(n)} 3: start->eval1, Arg_0: Arg_0 {O(n)} 3: start->eval1, Arg_1: Arg_1 {O(n)} 3: start->eval1, Arg_2: Arg_2 {O(n)} `Upper: 0: eval1->eval2, Arg_0: Arg_0 {O(n)} 0: eval1->eval2, Arg_1: Arg_1 {O(n)} 0: eval1->eval2, Arg_2: Arg_2 {O(n)} 1: eval2->eval2, Arg_0: Arg_0 {O(n)} 1: eval2->eval2, Arg_1: Arg_1 {O(n)} 1: eval2->eval2, Arg_2: Arg_2 {O(n)} 2: eval2->eval1, Arg_0: Arg_0 {O(n)} 2: eval2->eval1, Arg_1: Arg_1 {O(n)} 2: eval2->eval1, Arg_2: Arg_2 {O(n)} 3: start->eval1, Arg_0: Arg_0 {O(n)} 3: start->eval1, Arg_1: Arg_1 {O(n)} 3: start->eval1, Arg_2: Arg_2 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(1, 2 + Arg_0 + -1 * Arg_1) + nat(2 + Arg_0 + -1 * Arg_1) + nat(1 + -1 * Arg_1 + Arg_2)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: eval1 -> eval2 : [ A>=1+B ], cost: 1 1: eval2 -> eval2 : C'=-1+C, [ A>=1+B && C>=1+B ], cost: 1 2: eval2 -> eval1 : A'=-1+A, [ A>=1+B && B>=C ], cost: 1 3: start -> eval1 : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 3: start -> eval1 : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: eval2 -> eval2 : C'=-1+C, [ A>=1+B && C>=1+B ], cost: 1 Accelerated rule 1 with metering function C-B, yielding the new rule 4. Removing the simple loops: 1. Accelerated all simple loops using metering functions (where possible): Start location: start 0: eval1 -> eval2 : [ A>=1+B ], cost: 1 2: eval2 -> eval1 : A'=-1+A, [ A>=1+B && B>=C ], cost: 1 4: eval2 -> eval2 : C'=B, [ A>=1+B && C>=1+B ], cost: C-B 3: start -> eval1 : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 0: eval1 -> eval2 : [ A>=1+B ], cost: 1 5: eval1 -> eval2 : C'=B, [ A>=1+B && C>=1+B ], cost: 1+C-B 2: eval2 -> eval1 : A'=-1+A, [ A>=1+B && B>=C ], cost: 1 3: start -> eval1 : [], cost: 1 Eliminated locations (on tree-shaped paths): Start location: start 6: eval1 -> eval1 : A'=-1+A, [ A>=1+B && B>=C ], cost: 2 7: eval1 -> eval1 : A'=-1+A, C'=B, [ A>=1+B && C>=1+B ], cost: 2+C-B 3: start -> eval1 : [], cost: 1 Accelerating simple loops of location 0. Accelerating the following rules: 6: eval1 -> eval1 : A'=-1+A, [ A>=1+B && B>=C ], cost: 2 7: eval1 -> eval1 : A'=-1+A, C'=B, [ A>=1+B && C>=1+B ], cost: 2+C-B Accelerated rule 6 with metering function A-B, yielding the new rule 8. Found no metering function for rule 7. Removing the simple loops: 6. Accelerated all simple loops using metering functions (where possible): Start location: start 7: eval1 -> eval1 : A'=-1+A, C'=B, [ A>=1+B && C>=1+B ], cost: 2+C-B 8: eval1 -> eval1 : A'=B, [ A>=1+B && B>=C ], cost: 2*A-2*B 3: start -> eval1 : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 3: start -> eval1 : [], cost: 1 9: start -> eval1 : A'=-1+A, C'=B, [ A>=1+B && C>=1+B ], cost: 3+C-B 10: start -> eval1 : A'=B, [ A>=1+B && B>=C ], cost: 1+2*A-2*B Removed unreachable locations (and leaf rules with constant cost): Start location: start 9: start -> eval1 : A'=-1+A, C'=B, [ A>=1+B && C>=1+B ], cost: 3+C-B 10: start -> eval1 : A'=B, [ A>=1+B && B>=C ], cost: 1+2*A-2*B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 9: start -> eval1 : A'=-1+A, C'=B, [ A>=1+B && C>=1+B ], cost: 3+C-B 10: start -> eval1 : A'=B, [ A>=1+B && B>=C ], cost: 1+2*A-2*B Computing asymptotic complexity for rule 9 Solved the limit problem by the following transformations: Created initial limit problem: C-B (+/+!), 3+C-B (+), A-B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {C==n,A==0,B==-1} resulting limit problem: [solved] Solution: C / n A / 0 B / -1 Resulting cost 4+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 4+n Rule cost: 3+C-B Rule guard: [ A>=1+B && C>=1+B ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)