/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 28 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 330 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval(A, B, C) -> Com_1(eval(A - 1, B, C)) :|: A + B >= C + 1 && C >= 0 && A >= 1 eval(A, B, C) -> Com_1(eval(A, B - 1, C)) :|: A + B >= C + 1 && C >= 0 && 0 >= A && B >= 1 eval(A, B, C) -> Com_1(eval(A, B, C)) :|: A + B >= C + 1 && C >= 0 && 0 >= A && 0 >= B start(A, B, C) -> Com_1(eval(A, B, C)) :|: TRUE The start-symbols are:[start_3] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 2*Ar_0 + 2*Ar_1 + 1) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) eval(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_0 + Ar_1 >= Ar_2 + 1 /\ Ar_2 >= 0 /\ Ar_0 >= 1 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1 - 1, Ar_2)) [ Ar_0 + Ar_1 >= Ar_2 + 1 /\ Ar_2 >= 0 /\ 0 >= Ar_0 /\ Ar_1 >= 1 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1, Ar_2)) [ Ar_0 + Ar_1 >= Ar_2 + 1 /\ Ar_2 >= 0 /\ 0 >= Ar_0 /\ 0 >= Ar_1 ] (Comp: ?, Cost: 1) start(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Testing for reachability in the complexity graph removes the following transition from problem 1: eval(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1, Ar_2)) [ Ar_0 + Ar_1 >= Ar_2 + 1 /\ Ar_2 >= 0 /\ 0 >= Ar_0 /\ 0 >= Ar_1 ] We thus obtain the following problem: 2: T: (Comp: ?, Cost: 1) eval(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1 - 1, Ar_2)) [ Ar_0 + Ar_1 >= Ar_2 + 1 /\ Ar_2 >= 0 /\ 0 >= Ar_0 /\ Ar_1 >= 1 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_0 + Ar_1 >= Ar_2 + 1 /\ Ar_2 >= 0 /\ Ar_0 >= 1 ] (Comp: ?, Cost: 1) start(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: ?, Cost: 1) eval(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1 - 1, Ar_2)) [ Ar_0 + Ar_1 >= Ar_2 + 1 /\ Ar_2 >= 0 /\ 0 >= Ar_0 /\ Ar_1 >= 1 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_0 + Ar_1 >= Ar_2 + 1 /\ Ar_2 >= 0 /\ Ar_0 >= 1 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(eval) = V_1 + V_2 Pol(start) = V_1 + V_2 Pol(koat_start) = V_1 + V_2 orients all transitions weakly and the transitions eval(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1 - 1, Ar_2)) [ Ar_0 + Ar_1 >= Ar_2 + 1 /\ Ar_2 >= 0 /\ 0 >= Ar_0 /\ Ar_1 >= 1 ] eval(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_0 + Ar_1 >= Ar_2 + 1 /\ Ar_2 >= 0 /\ Ar_0 >= 1 ] strictly and produces the following problem: 4: T: (Comp: Ar_0 + Ar_1, Cost: 1) eval(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1 - 1, Ar_2)) [ Ar_0 + Ar_1 >= Ar_2 + 1 /\ Ar_2 >= 0 /\ 0 >= Ar_0 /\ Ar_1 >= 1 ] (Comp: Ar_0 + Ar_1, Cost: 1) eval(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_0 + Ar_1 >= Ar_2 + 1 /\ Ar_2 >= 0 /\ Ar_0 >= 1 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 2*Ar_0 + 2*Ar_1 + 1 Time: 0.053 sec (SMT: 0.045 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: eval -> eval : A'=-1+A, [ A+B>=1+C && C>=0 && A>=1 ], cost: 1 1: eval -> eval : B'=-1+B, [ A+B>=1+C && C>=0 && 0>=A && B>=1 ], cost: 1 2: eval -> eval : [ A+B>=1+C && C>=0 && 0>=A && 0>=B ], cost: 1 3: start -> eval : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 3: start -> eval : [], cost: 1 Removed rules with unsatisfiable guard: Start location: start 0: eval -> eval : A'=-1+A, [ A+B>=1+C && C>=0 && A>=1 ], cost: 1 1: eval -> eval : B'=-1+B, [ A+B>=1+C && C>=0 && 0>=A && B>=1 ], cost: 1 3: start -> eval : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: eval -> eval : A'=-1+A, [ A+B>=1+C && C>=0 && A>=1 ], cost: 1 1: eval -> eval : B'=-1+B, [ A+B>=1+C && C>=0 && 0>=A ], cost: 1 Found no metering function for rule 0. Accelerated rule 1 with metering function -C+A+B, yielding the new rule 4. Removing the simple loops: 1. Accelerated all simple loops using metering functions (where possible): Start location: start 0: eval -> eval : A'=-1+A, [ A+B>=1+C && C>=0 && A>=1 ], cost: 1 4: eval -> eval : B'=C-A, [ A+B>=1+C && C>=0 && 0>=A ], cost: -C+A+B 3: start -> eval : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 3: start -> eval : [], cost: 1 5: start -> eval : A'=-1+A, [ A+B>=1+C && C>=0 && A>=1 ], cost: 2 6: start -> eval : B'=C-A, [ A+B>=1+C && C>=0 && 0>=A ], cost: 1-C+A+B Removed unreachable locations (and leaf rules with constant cost): Start location: start 6: start -> eval : B'=C-A, [ A+B>=1+C && C>=0 && 0>=A ], cost: 1-C+A+B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 6: start -> eval : B'=C-A, [ A+B>=1+C && C>=0 && 0>=A ], cost: 1-C+A+B Computing asymptotic complexity for rule 6 Solved the limit problem by the following transformations: Created initial limit problem: 1+C (+/+!), 1-A (+/+!), -C+A+B (+/+!), 1-C+A+B (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {C==n,A==-n,B==3*n} resulting limit problem: [solved] Solution: C / n A / -n B / 3*n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1-C+A+B Rule guard: [ A+B>=1+C && C>=0 && 0>=A ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)