/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, max(2, 4 + 2 * Arg_0) + nat(1 + Arg_1)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 455 ms] (2) BOUNDS(1, max(2, 4 + 2 * Arg_0) + nat(1 + Arg_1)) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval(A, B) -> Com_1(eval(A - 1, B)) :|: A + B >= 1 && A >= B + 1 eval(A, B) -> Com_1(eval(A - 1, B)) :|: 2 * A >= 1 && B >= A && B <= A eval(A, B) -> Com_1(eval(A, B - 1)) :|: A + B >= 1 && B >= A && B >= A + 1 eval(A, B) -> Com_1(eval(A, B - 1)) :|: A + B >= 1 && B >= A && A >= B + 1 start(A, B) -> Com_1(eval(A, B)) :|: TRUE The start-symbols are:[start_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, 2+2*max([0, 1+Arg_0])+max([0, 1+Arg_1]) {O(n)}) Initial Complexity Problem: Start: start Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: eval, start Transitions: 0: eval->eval 1: eval->eval 2: eval->eval 3: eval->eval 4: start->eval Timebounds: Overall timebound: 2+2*max([0, 1+Arg_0])+max([0, 1+Arg_1]) {O(n)} 0: eval->eval: max([0, 1+Arg_0]) {O(n)} 1: eval->eval: max([0, 1+Arg_0]) {O(n)} 2: eval->eval: max([0, 1+Arg_1]) {O(n)} 3: eval->eval: 1 {O(1)} 4: start->eval: 1 {O(1)} Costbounds: Overall costbound: 2+2*max([0, 1+Arg_0])+max([0, 1+Arg_1]) {O(n)} 0: eval->eval: max([0, 1+Arg_0]) {O(n)} 1: eval->eval: max([0, 1+Arg_0]) {O(n)} 2: eval->eval: max([0, 1+Arg_1]) {O(n)} 3: eval->eval: 1 {O(1)} 4: start->eval: 1 {O(1)} Sizebounds: `Lower: 0: eval->eval, Arg_0: 0 {O(1)} 0: eval->eval, Arg_1: Arg_1 {O(n)} 1: eval->eval, Arg_0: 0 {O(1)} 1: eval->eval, Arg_1: 1 {O(1)} 2: eval->eval, Arg_0: min([0, Arg_0]) {O(n)} 2: eval->eval, Arg_1: 0 {O(1)} 3: eval->eval, Arg_0: inf {Infinity} 3: eval->eval, Arg_1: inf {Infinity} 4: start->eval, Arg_0: Arg_0 {O(n)} 4: start->eval, Arg_1: Arg_1 {O(n)} `Upper: 0: eval->eval, Arg_0: Arg_0 {O(n)} 0: eval->eval, Arg_1: Arg_1 {O(n)} 1: eval->eval, Arg_0: Arg_0 {O(n)} 1: eval->eval, Arg_1: Arg_1 {O(n)} 2: eval->eval, Arg_0: Arg_0 {O(n)} 2: eval->eval, Arg_1: Arg_1 {O(n)} 3: eval->eval, Arg_0: -(inf) {Infinity} 3: eval->eval, Arg_1: -(inf) {Infinity} 4: start->eval, Arg_0: Arg_0 {O(n)} 4: start->eval, Arg_1: Arg_1 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(2, 4 + 2 * Arg_0) + nat(1 + Arg_1))