/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 1 + Arg_0) + nat(2 + 2 * Arg_0)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 238 ms] (2) BOUNDS(1, max(1, 1 + Arg_0) + nat(2 + 2 * Arg_0)) (3) Loat Proof [FINISHED, 316 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval1(A, B) -> Com_1(eval2(A, B)) :|: A >= 1 && B >= A && B <= A eval2(A, B) -> Com_1(eval2(A - 1, B - 1)) :|: A >= 1 eval2(A, B) -> Com_1(eval1(A, B)) :|: 0 >= A start(A, B) -> Com_1(eval1(A, B)) :|: TRUE The start-symbols are:[start_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, 1+max([0, Arg_0])+max([0, 1+Arg_0])+max([0, 1+Arg_0]) {O(n)}) Initial Complexity Problem: Start: start Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: eval1, eval2, start Transitions: 0: eval1->eval2 2: eval2->eval1 1: eval2->eval2 3: start->eval1 Timebounds: Overall timebound: 1+max([0, Arg_0])+max([0, 1+Arg_0])+max([0, 1+Arg_0]) {O(n)} 0: eval1->eval2: max([0, 1+Arg_0]) {O(n)} 1: eval2->eval2: max([0, 1+Arg_0]) {O(n)} 2: eval2->eval1: max([0, Arg_0]) {O(n)} 3: start->eval1: 1 {O(1)} Costbounds: Overall costbound: 1+max([0, Arg_0])+max([0, 1+Arg_0])+max([0, 1+Arg_0]) {O(n)} 0: eval1->eval2: max([0, 1+Arg_0]) {O(n)} 1: eval2->eval2: max([0, 1+Arg_0]) {O(n)} 2: eval2->eval1: max([0, Arg_0]) {O(n)} 3: start->eval1: 1 {O(1)} Sizebounds: `Lower: 0: eval1->eval2, Arg_0: 1 {O(1)} 0: eval1->eval2, Arg_1: 1 {O(1)} 1: eval2->eval2, Arg_0: 0 {O(1)} 1: eval2->eval2, Arg_1: min([1, -(Arg_0)]) {O(n)} 2: eval2->eval1, Arg_0: 0 {O(1)} 2: eval2->eval1, Arg_1: min([1, -(Arg_0)]) {O(n)} 3: start->eval1, Arg_0: Arg_0 {O(n)} 3: start->eval1, Arg_1: Arg_1 {O(n)} `Upper: 0: eval1->eval2, Arg_0: Arg_0 {O(n)} 0: eval1->eval2, Arg_1: Arg_1 {O(n)} 1: eval2->eval2, Arg_0: Arg_0 {O(n)} 1: eval2->eval2, Arg_1: Arg_1 {O(n)} 2: eval2->eval1, Arg_0: 0 {O(1)} 2: eval2->eval1, Arg_1: Arg_1 {O(n)} 3: start->eval1, Arg_0: Arg_0 {O(n)} 3: start->eval1, Arg_1: Arg_1 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(1, 1 + Arg_0) + nat(2 + 2 * Arg_0)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: eval1 -> eval2 : [ A>=1 && B==A ], cost: 1 1: eval2 -> eval2 : A'=-1+A, B'=-1+B, [ A>=1 ], cost: 1 2: eval2 -> eval1 : [ 0>=A ], cost: 1 3: start -> eval1 : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 3: start -> eval1 : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: eval2 -> eval2 : A'=-1+A, B'=-1+B, [ A>=1 ], cost: 1 Accelerated rule 1 with metering function A, yielding the new rule 4. Removing the simple loops: 1. Accelerated all simple loops using metering functions (where possible): Start location: start 0: eval1 -> eval2 : [ A>=1 && B==A ], cost: 1 2: eval2 -> eval1 : [ 0>=A ], cost: 1 4: eval2 -> eval2 : A'=0, B'=-A+B, [ A>=1 ], cost: A 3: start -> eval1 : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 0: eval1 -> eval2 : [ A>=1 && B==A ], cost: 1 5: eval1 -> eval2 : A'=0, B'=-A+B, [ A>=1 && B==A ], cost: 1+A 2: eval2 -> eval1 : [ 0>=A ], cost: 1 3: start -> eval1 : [], cost: 1 Eliminated locations (on tree-shaped paths): Start location: start 6: eval1 -> eval1 : A'=0, B'=-A+B, [ A>=1 && B==A ], cost: 2+A 3: start -> eval1 : [], cost: 1 Accelerating simple loops of location 0. Accelerating the following rules: 6: eval1 -> eval1 : A'=0, B'=-A+B, [ A>=1 && B==A ], cost: 2+A Found no metering function for rule 6. Removing the simple loops:. Accelerated all simple loops using metering functions (where possible): Start location: start 6: eval1 -> eval1 : A'=0, B'=-A+B, [ A>=1 && B==A ], cost: 2+A 3: start -> eval1 : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 3: start -> eval1 : [], cost: 1 7: start -> eval1 : A'=0, B'=-A+B, [ A>=1 && B==A ], cost: 3+A Removed unreachable locations (and leaf rules with constant cost): Start location: start 7: start -> eval1 : A'=0, B'=-A+B, [ A>=1 && B==A ], cost: 3+A ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 7: start -> eval1 : A'=0, B'=-A+B, [ A>=1 && B==A ], cost: 3+A Computing asymptotic complexity for rule 7 Solved the limit problem by the following transformations: Created initial limit problem: A (+/+!), 1+A-B (+/+!), 3+A (+), 1-A+B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n,B==n} resulting limit problem: [solved] Solution: A / n B / n Resulting cost 3+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 3+n Rule cost: 3+A Rule guard: [ A>=1 && B==A ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)