/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 5 + 4 * Arg_1)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 420 ms] (2) BOUNDS(1, max(1, 5 + 4 * Arg_1)) (3) Loat Proof [FINISHED, 727 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval(A, B) -> Com_1(eval(A, A)) :|: 0 >= A && B >= 1 && B <= 1 eval(A, B) -> Com_1(eval(A, A)) :|: B >= 1 && 1 + B >= 0 && B >= A + 1 eval(A, B) -> Com_1(eval(A, 0)) :|: A >= 1 && B >= 1 && B <= 1 eval(A, B) -> Com_1(eval(A, B - 1)) :|: B >= 1 && 1 + B >= 0 && A >= B start(A, B) -> Com_1(eval(A, B)) :|: TRUE The start-symbols are:[start_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, 1+2*2*max([0, 1+Arg_1]) {O(n)}) Initial Complexity Problem: Start: start Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: eval, start Transitions: 0: eval->eval 1: eval->eval 2: eval->eval 3: eval->eval 4: start->eval Timebounds: Overall timebound: 1+2*2*max([0, 1+Arg_1]) {O(n)} 0: eval->eval: max([0, 1+Arg_1]) {O(n)} 1: eval->eval: max([0, 1+Arg_1]) {O(n)} 2: eval->eval: max([0, 1+Arg_1]) {O(n)} 3: eval->eval: max([0, 1+Arg_1]) {O(n)} 4: start->eval: 1 {O(1)} Costbounds: Overall costbound: 1+2*2*max([0, 1+Arg_1]) {O(n)} 0: eval->eval: max([0, 1+Arg_1]) {O(n)} 1: eval->eval: max([0, 1+Arg_1]) {O(n)} 2: eval->eval: max([0, 1+Arg_1]) {O(n)} 3: eval->eval: max([0, 1+Arg_1]) {O(n)} 4: start->eval: 1 {O(1)} Sizebounds: `Lower: 0: eval->eval, Arg_0: Arg_0 {O(n)} 0: eval->eval, Arg_1: Arg_0 {O(n)} 1: eval->eval, Arg_0: Arg_0 {O(n)} 1: eval->eval, Arg_1: Arg_0 {O(n)} 2: eval->eval, Arg_0: 1 {O(1)} 2: eval->eval, Arg_1: 0 {O(1)} 3: eval->eval, Arg_0: 1 {O(1)} 3: eval->eval, Arg_1: 0 {O(1)} 4: start->eval, Arg_0: Arg_0 {O(n)} 4: start->eval, Arg_1: Arg_1 {O(n)} `Upper: 0: eval->eval, Arg_0: 0 {O(1)} 0: eval->eval, Arg_1: 0 {O(1)} 1: eval->eval, Arg_0: Arg_0 {O(n)} 1: eval->eval, Arg_1: Arg_0 {O(n)} 2: eval->eval, Arg_0: Arg_0 {O(n)} 2: eval->eval, Arg_1: 0 {O(1)} 3: eval->eval, Arg_0: Arg_0 {O(n)} 3: eval->eval, Arg_1: max([Arg_0, Arg_1]) {O(n)} 4: start->eval, Arg_0: Arg_0 {O(n)} 4: start->eval, Arg_1: Arg_1 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(1, 5 + 4 * Arg_1)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: eval -> eval : B'=A, [ 0>=A && B==1 ], cost: 1 1: eval -> eval : B'=A, [ B>=1 && 1+B>=0 && B>=1+A ], cost: 1 2: eval -> eval : B'=0, [ A>=1 && B==1 ], cost: 1 3: eval -> eval : B'=-1+B, [ B>=1 && 1+B>=0 && A>=B ], cost: 1 4: start -> eval : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 4: start -> eval : [], cost: 1 Simplified all rules, resulting in: Start location: start 0: eval -> eval : B'=A, [ 0>=A && B==1 ], cost: 1 1: eval -> eval : B'=A, [ B>=1 && B>=1+A ], cost: 1 2: eval -> eval : B'=0, [ A>=1 && B==1 ], cost: 1 3: eval -> eval : B'=-1+B, [ B>=1 && A>=B ], cost: 1 4: start -> eval : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: eval -> eval : B'=A, [ 0>=A && B==1 ], cost: 1 1: eval -> eval : B'=A, [ B>=1 && B>=1+A ], cost: 1 2: eval -> eval : B'=0, [ A>=1 && B==1 ], cost: 1 3: eval -> eval : B'=-1+B, [ B>=1 && A>=B ], cost: 1 Accelerated rule 0 with NONTERM (after strengthening guard), yielding the new rule 5. Found no metering function for rule 1. Accelerated rule 2 with metering function B, yielding the new rule 6. Accelerated rule 3 with metering function B, yielding the new rule 7. Nested simple loops 1 (outer loop) and 6 (inner loop) with metering function 1-A, resulting in the new rules: 8. Removing the simple loops: 1 2 3. Accelerated all simple loops using metering functions (where possible): Start location: start 0: eval -> eval : B'=A, [ 0>=A && B==1 ], cost: 1 5: eval -> [2] : [ 0>=A && B==1 && A==1 ], cost: NONTERM 6: eval -> eval : B'=0, [ A>=1 && B==1 ], cost: B 7: eval -> eval : B'=0, [ B>=1 && A>=B ], cost: B 8: eval -> eval : B'=0, [ B>=1 && B>=1+A && A==1 && 1-A>=1 ], cost: 1-(-1+A)*A-A 4: start -> eval : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 4: start -> eval : [], cost: 1 9: start -> eval : B'=A, [ 0>=A && B==1 ], cost: 2 10: start -> eval : B'=0, [ A>=1 && B==1 ], cost: 1+B 11: start -> eval : B'=0, [ B>=1 && A>=B ], cost: 1+B Removed unreachable locations (and leaf rules with constant cost): Start location: start 10: start -> eval : B'=0, [ A>=1 && B==1 ], cost: 1+B 11: start -> eval : B'=0, [ B>=1 && A>=B ], cost: 1+B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 10: start -> eval : B'=0, [ A>=1 && B==1 ], cost: 1+B 11: start -> eval : B'=0, [ B>=1 && A>=B ], cost: 1+B Computing asymptotic complexity for rule 10 Could not solve the limit problem. Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 11 Solved the limit problem by the following transformations: Created initial limit problem: 1+B (+), 1+A-B (+/+!), B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n,B==n} resulting limit problem: [solved] Solution: A / n B / n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+B Rule guard: [ B>=1 && A>=B ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)