/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 18 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 227 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval1(A, B, C) -> Com_1(eval2(A, B, C)) :|: A >= B + 1 && C >= A && C <= A eval2(A, B, C) -> Com_1(eval2(A - 1, B, C - 1)) :|: A >= B + 1 eval2(A, B, C) -> Com_1(eval1(A, B, C)) :|: B >= A start(A, B, C) -> Com_1(eval1(A, B, C)) :|: TRUE The start-symbols are:[start_3] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, Ar_0 + Ar_1 + 3) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) eval1(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 + 1 /\ Ar_2 = Ar_0 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_2 - 1)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 ] (Comp: ?, Cost: 1) start(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 + 1 /\ Ar_2 = Ar_0 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_2 - 1)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(eval2) = 1 Pol(eval1) = 0 and size complexities S("koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ]", 0-1) = Ar_1 S("koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ]", 0-2) = Ar_2 S("start(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2))", 0-0) = Ar_0 S("start(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2))", 0-1) = Ar_1 S("start(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2))", 0-2) = Ar_2 S("eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 ]", 0-0) = ? S("eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 ]", 0-1) = Ar_1 S("eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 ]", 0-2) = ? S("eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_2 - 1)) [ Ar_0 >= Ar_1 + 1 ]", 0-0) = ? S("eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_2 - 1)) [ Ar_0 >= Ar_1 + 1 ]", 0-1) = Ar_1 S("eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_2 - 1)) [ Ar_0 >= Ar_1 + 1 ]", 0-2) = ? S("eval1(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 + 1 /\\ Ar_2 = Ar_0 ]", 0-0) = Ar_0 S("eval1(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 + 1 /\\ Ar_2 = Ar_0 ]", 0-1) = Ar_1 S("eval1(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 + 1 /\\ Ar_2 = Ar_0 ]", 0-2) = Ar_2 orients the transitions eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_2 - 1)) [ Ar_0 >= Ar_1 + 1 ] eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 ] weakly and the transition eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 + 1 /\ Ar_2 = Ar_0 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_2 - 1)) [ Ar_0 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(eval1) = V_1 - V_2 Pol(eval2) = V_1 - V_2 Pol(start) = V_1 - V_2 Pol(koat_start) = V_1 - V_2 orients all transitions weakly and the transition eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_2 - 1)) [ Ar_0 >= Ar_1 + 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 + 1 /\ Ar_2 = Ar_0 ] (Comp: Ar_0 + Ar_1, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0 - 1, Ar_1, Ar_2 - 1)) [ Ar_0 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound Ar_0 + Ar_1 + 3 Time: 0.039 sec (SMT: 0.032 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: eval1 -> eval2 : [ A>=1+B && C==A ], cost: 1 1: eval2 -> eval2 : A'=-1+A, C'=-1+C, [ A>=1+B ], cost: 1 2: eval2 -> eval1 : [ B>=A ], cost: 1 3: start -> eval1 : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 3: start -> eval1 : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: eval2 -> eval2 : A'=-1+A, C'=-1+C, [ A>=1+B ], cost: 1 Accelerated rule 1 with metering function A-B, yielding the new rule 4. Removing the simple loops: 1. Accelerated all simple loops using metering functions (where possible): Start location: start 0: eval1 -> eval2 : [ A>=1+B && C==A ], cost: 1 2: eval2 -> eval1 : [ B>=A ], cost: 1 4: eval2 -> eval2 : A'=B, C'=C-A+B, [ A>=1+B ], cost: A-B 3: start -> eval1 : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 0: eval1 -> eval2 : [ A>=1+B && C==A ], cost: 1 5: eval1 -> eval2 : A'=B, C'=C-A+B, [ A>=1+B && C==A ], cost: 1+A-B 2: eval2 -> eval1 : [ B>=A ], cost: 1 3: start -> eval1 : [], cost: 1 Eliminated locations (on tree-shaped paths): Start location: start 6: eval1 -> eval1 : A'=B, C'=C-A+B, [ A>=1+B && C==A ], cost: 2+A-B 3: start -> eval1 : [], cost: 1 Accelerating simple loops of location 0. Accelerating the following rules: 6: eval1 -> eval1 : A'=B, C'=C-A+B, [ A>=1+B && C==A ], cost: 2+A-B Found no metering function for rule 6. Removing the simple loops:. Accelerated all simple loops using metering functions (where possible): Start location: start 6: eval1 -> eval1 : A'=B, C'=C-A+B, [ A>=1+B && C==A ], cost: 2+A-B 3: start -> eval1 : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 3: start -> eval1 : [], cost: 1 7: start -> eval1 : A'=B, C'=C-A+B, [ A>=1+B && C==A ], cost: 3+A-B Removed unreachable locations (and leaf rules with constant cost): Start location: start 7: start -> eval1 : A'=B, C'=C-A+B, [ A>=1+B && C==A ], cost: 3+A-B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 7: start -> eval1 : A'=B, C'=C-A+B, [ A>=1+B && C==A ], cost: 3+A-B Computing asymptotic complexity for rule 7 Solved the limit problem by the following transformations: Created initial limit problem: 1-C+A (+/+!), 1+C-A (+/+!), A-B (+/+!), 3+A-B (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {C==0,A==0,B==-n} resulting limit problem: [solved] Solution: C / 0 A / 0 B / -n Resulting cost 3+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 3+n Rule cost: 3+A-B Rule guard: [ A>=1+B && C==A ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)