/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, max(4 + 2 * Arg_0, 2) + nat(1 + Arg_0)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 939 ms] (2) BOUNDS(1, max(4 + 2 * Arg_0, 2) + nat(1 + Arg_0)) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval(A) -> Com_1(eval(0)) :|: 2 * B >= 0 && 0 >= 2 * B && A >= 1 && A <= 1 eval(A) -> Com_1(eval(2 * B)) :|: 2 * B >= 0 && 2 + 2 * B >= 0 && A >= 1 + 2 * B && A <= 1 + 2 * B eval(A) -> Com_1(eval(B)) :|: 1 >= 2 * C && 2 * C >= 0 && 2 * D >= 1 && 1 >= 2 * D && 1 >= 2 * E && 3 * E >= 2 && B >= E && 1 >= 2 * F && 3 * F >= 2 && F >= B && A >= 1 && A <= 1 eval(A) -> Com_1(eval(B)) :|: 2 * D >= 1 && 1 + 2 * D >= 0 && 2 * D >= 2 * C && 1 + 2 * C >= 2 * D && 2 * D >= 2 * E && 3 * E >= 2 * D + 1 && B >= E && 2 * D >= 2 * F && 3 * F >= 2 * D + 1 && F >= B && A >= 2 * D && A <= 2 * D start(A) -> Com_1(eval(A)) :|: TRUE The start-symbols are:[start_1] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, 2+2*max([0, 1+Arg_0])+max([0, 1+Arg_0]) {O(n)}) Initial Complexity Problem: Start: start Program_Vars: Arg_0 Temp_Vars: B, C, D, E, F Locations: eval, start Transitions: 0: eval->eval 1: eval->eval 2: eval->eval 3: eval->eval 4: start->eval Timebounds: Overall timebound: 2+2*max([0, 1+Arg_0])+max([0, 1+Arg_0]) {O(n)} 0: eval->eval: max([0, 1+Arg_0]) {O(n)} 1: eval->eval: max([0, 1+Arg_0]) {O(n)} 2: eval->eval: 1 {O(1)} 3: eval->eval: max([0, 1+Arg_0]) {O(n)} 4: start->eval: 1 {O(1)} Costbounds: Overall costbound: 2+2*max([0, 1+Arg_0])+max([0, 1+Arg_0]) {O(n)} 0: eval->eval: max([0, 1+Arg_0]) {O(n)} 1: eval->eval: max([0, 1+Arg_0]) {O(n)} 2: eval->eval: 1 {O(1)} 3: eval->eval: max([0, 1+Arg_0]) {O(n)} 4: start->eval: 1 {O(1)} Sizebounds: `Lower: 0: eval->eval, Arg_0: 0 {O(1)} 1: eval->eval, Arg_0: 0 {O(1)} 2: eval->eval, Arg_0: inf {Infinity} 3: eval->eval, Arg_0: 1 {O(1)} 4: start->eval, Arg_0: Arg_0 {O(n)} `Upper: 0: eval->eval, Arg_0: 0 {O(1)} 2: eval->eval, Arg_0: -(inf) {Infinity} 4: start->eval, Arg_0: Arg_0 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(4 + 2 * Arg_0, 2) + nat(1 + Arg_0))