/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 12 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 623 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval(A, B) -> Com_1(eval(A - 1, B)) :|: A >= 1 eval(A, B) -> Com_1(eval(A - 1, B)) :|: B >= 1 && A >= 1 eval(A, B) -> Com_1(eval(A, B - 1)) :|: A >= 1 && 0 >= A && B >= 1 eval(A, B) -> Com_1(eval(A, B - 1)) :|: B >= 1 && 0 >= A eval(A, B) -> Com_1(eval(A, B)) :|: A >= 1 && 0 >= A && 0 >= B eval(A, B) -> Com_1(eval(A, B)) :|: B >= 1 && 0 >= A && 0 >= B start(A, B) -> Com_1(eval(A, B)) :|: TRUE The start-symbols are:[start_2] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, Ar_1 + 2*Ar_0 + 1) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 - 1, Ar_1)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 - 1, Ar_1)) [ Ar_1 >= 1 /\ Ar_0 >= 1 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 - 1)) [ Ar_0 >= 1 /\ 0 >= Ar_0 /\ Ar_1 >= 1 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 - 1)) [ Ar_1 >= 1 /\ 0 >= Ar_0 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1)) [ Ar_0 >= 1 /\ 0 >= Ar_0 /\ 0 >= Ar_1 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1)) [ Ar_1 >= 1 /\ 0 >= Ar_0 /\ 0 >= Ar_1 ] (Comp: ?, Cost: 1) start(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Testing for reachability in the complexity graph removes the following transitions from problem 1: eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 - 1)) [ Ar_0 >= 1 /\ 0 >= Ar_0 /\ Ar_1 >= 1 ] eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1)) [ Ar_0 >= 1 /\ 0 >= Ar_0 /\ 0 >= Ar_1 ] eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1)) [ Ar_1 >= 1 /\ 0 >= Ar_0 /\ 0 >= Ar_1 ] We thus obtain the following problem: 2: T: (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 - 1)) [ Ar_1 >= 1 /\ 0 >= Ar_0 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 - 1, Ar_1)) [ Ar_1 >= 1 /\ Ar_0 >= 1 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 - 1, Ar_1)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) start(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 - 1)) [ Ar_1 >= 1 /\ 0 >= Ar_0 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 - 1, Ar_1)) [ Ar_1 >= 1 /\ Ar_0 >= 1 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 - 1, Ar_1)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(eval) = V_2 Pol(start) = V_2 Pol(koat_start) = V_2 orients all transitions weakly and the transition eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 - 1)) [ Ar_1 >= 1 /\ 0 >= Ar_0 ] strictly and produces the following problem: 4: T: (Comp: Ar_1, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 - 1)) [ Ar_1 >= 1 /\ 0 >= Ar_0 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 - 1, Ar_1)) [ Ar_1 >= 1 /\ Ar_0 >= 1 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 - 1, Ar_1)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(eval) = V_1 Pol(start) = V_1 Pol(koat_start) = V_1 orients all transitions weakly and the transitions eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 - 1, Ar_1)) [ Ar_1 >= 1 /\ Ar_0 >= 1 ] eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 - 1, Ar_1)) [ Ar_0 >= 1 ] strictly and produces the following problem: 5: T: (Comp: Ar_1, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 - 1)) [ Ar_1 >= 1 /\ 0 >= Ar_0 ] (Comp: Ar_0, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 - 1, Ar_1)) [ Ar_1 >= 1 /\ Ar_0 >= 1 ] (Comp: Ar_0, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 - 1, Ar_1)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound Ar_1 + 2*Ar_0 + 1 Time: 0.085 sec (SMT: 0.076 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: eval -> eval : A'=-1+A, [ A>=1 ], cost: 1 1: eval -> eval : A'=-1+A, [ B>=1 && A>=1 ], cost: 1 2: eval -> eval : B'=-1+B, [ A>=1 && 0>=A && B>=1 ], cost: 1 3: eval -> eval : B'=-1+B, [ B>=1 && 0>=A ], cost: 1 4: eval -> eval : [ A>=1 && 0>=A && 0>=B ], cost: 1 5: eval -> eval : [ B>=1 && 0>=A && 0>=B ], cost: 1 6: start -> eval : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 6: start -> eval : [], cost: 1 Removed rules with unsatisfiable guard: Start location: start 0: eval -> eval : A'=-1+A, [ A>=1 ], cost: 1 1: eval -> eval : A'=-1+A, [ B>=1 && A>=1 ], cost: 1 3: eval -> eval : B'=-1+B, [ B>=1 && 0>=A ], cost: 1 6: start -> eval : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: eval -> eval : A'=-1+A, [ A>=1 ], cost: 1 1: eval -> eval : A'=-1+A, [ B>=1 && A>=1 ], cost: 1 3: eval -> eval : B'=-1+B, [ B>=1 && 0>=A ], cost: 1 Accelerated rule 0 with metering function A, yielding the new rule 7. Accelerated rule 1 with metering function A, yielding the new rule 8. Accelerated rule 3 with metering function B, yielding the new rule 9. Removing the simple loops: 0 1 3. Accelerated all simple loops using metering functions (where possible): Start location: start 7: eval -> eval : A'=0, [ A>=1 ], cost: A 8: eval -> eval : A'=0, [ B>=1 && A>=1 ], cost: A 9: eval -> eval : B'=0, [ B>=1 && 0>=A ], cost: B 6: start -> eval : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 6: start -> eval : [], cost: 1 10: start -> eval : A'=0, [ A>=1 ], cost: 1+A 11: start -> eval : A'=0, [ B>=1 && A>=1 ], cost: 1+A 12: start -> eval : B'=0, [ B>=1 && 0>=A ], cost: 1+B Removed unreachable locations (and leaf rules with constant cost): Start location: start 10: start -> eval : A'=0, [ A>=1 ], cost: 1+A 11: start -> eval : A'=0, [ B>=1 && A>=1 ], cost: 1+A 12: start -> eval : B'=0, [ B>=1 && 0>=A ], cost: 1+B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 10: start -> eval : A'=0, [ A>=1 ], cost: 1+A 11: start -> eval : A'=0, [ B>=1 && A>=1 ], cost: 1+A 12: start -> eval : B'=0, [ B>=1 && 0>=A ], cost: 1+B Computing asymptotic complexity for rule 10 Solved the limit problem by the following transformations: Created initial limit problem: A (+/+!), 1+A (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n} resulting limit problem: [solved] Solution: A / n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+A Rule guard: [ A>=1 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)