/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 21 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 113 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: l0(A, B) -> Com_1(l1(0, B)) :|: TRUE l1(A, B) -> Com_1(l1(A + 1, B - 1)) :|: B >= 1 l1(A, B) -> Com_1(l2(A, B)) :|: 0 >= B The start-symbols are:[l0_2] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, Ar_1 + 2) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) l0(Ar_0, Ar_1) -> Com_1(l1(0, Ar_1)) (Comp: ?, Cost: 1) l1(Ar_0, Ar_1) -> Com_1(l1(Ar_0 + 1, Ar_1 - 1)) [ Ar_1 >= 1 ] (Comp: ?, Cost: 1) l1(Ar_0, Ar_1) -> Com_1(l2(Ar_0, Ar_1)) [ 0 >= Ar_1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(l0(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) l0(Ar_0, Ar_1) -> Com_1(l1(0, Ar_1)) (Comp: ?, Cost: 1) l1(Ar_0, Ar_1) -> Com_1(l1(Ar_0 + 1, Ar_1 - 1)) [ Ar_1 >= 1 ] (Comp: ?, Cost: 1) l1(Ar_0, Ar_1) -> Com_1(l2(Ar_0, Ar_1)) [ 0 >= Ar_1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(l0(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(l0) = 1 Pol(l1) = 1 Pol(l2) = 0 Pol(koat_start) = 1 orients all transitions weakly and the transition l1(Ar_0, Ar_1) -> Com_1(l2(Ar_0, Ar_1)) [ 0 >= Ar_1 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) l0(Ar_0, Ar_1) -> Com_1(l1(0, Ar_1)) (Comp: ?, Cost: 1) l1(Ar_0, Ar_1) -> Com_1(l1(Ar_0 + 1, Ar_1 - 1)) [ Ar_1 >= 1 ] (Comp: 1, Cost: 1) l1(Ar_0, Ar_1) -> Com_1(l2(Ar_0, Ar_1)) [ 0 >= Ar_1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(l0(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(l0) = V_2 Pol(l1) = V_2 Pol(l2) = V_2 Pol(koat_start) = V_2 orients all transitions weakly and the transition l1(Ar_0, Ar_1) -> Com_1(l1(Ar_0 + 1, Ar_1 - 1)) [ Ar_1 >= 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) l0(Ar_0, Ar_1) -> Com_1(l1(0, Ar_1)) (Comp: Ar_1, Cost: 1) l1(Ar_0, Ar_1) -> Com_1(l1(Ar_0 + 1, Ar_1 - 1)) [ Ar_1 >= 1 ] (Comp: 1, Cost: 1) l1(Ar_0, Ar_1) -> Com_1(l2(Ar_0, Ar_1)) [ 0 >= Ar_1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(l0(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound Ar_1 + 2 Time: 0.032 sec (SMT: 0.029 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l0 0: l0 -> l1 : A'=0, [], cost: 1 1: l1 -> l1 : A'=1+A, B'=-1+B, [ B>=1 ], cost: 1 2: l1 -> l2 : [ 0>=B ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: l0 -> l1 : A'=0, [], cost: 1 Removed unreachable and leaf rules: Start location: l0 0: l0 -> l1 : A'=0, [], cost: 1 1: l1 -> l1 : A'=1+A, B'=-1+B, [ B>=1 ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: l1 -> l1 : A'=1+A, B'=-1+B, [ B>=1 ], cost: 1 Accelerated rule 1 with metering function B, yielding the new rule 3. Removing the simple loops: 1. Accelerated all simple loops using metering functions (where possible): Start location: l0 0: l0 -> l1 : A'=0, [], cost: 1 3: l1 -> l1 : A'=A+B, B'=0, [ B>=1 ], cost: B Chained accelerated rules (with incoming rules): Start location: l0 0: l0 -> l1 : A'=0, [], cost: 1 4: l0 -> l1 : A'=B, B'=0, [ B>=1 ], cost: 1+B Removed unreachable locations (and leaf rules with constant cost): Start location: l0 4: l0 -> l1 : A'=B, B'=0, [ B>=1 ], cost: 1+B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l0 4: l0 -> l1 : A'=B, B'=0, [ B>=1 ], cost: 1+B Computing asymptotic complexity for rule 4 Solved the limit problem by the following transformations: Created initial limit problem: 1+B (+), B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {B==n} resulting limit problem: [solved] Solution: B / n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+B Rule guard: [ B>=1 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)