/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1 + Arg_1, 1 + Arg_1 + nat(1 + Arg_0), 0) + max(2, 3 + Arg_0)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 198 ms] (2) BOUNDS(1, max(1 + Arg_1, 1 + Arg_1 + nat(1 + Arg_0), 0) + max(2, 3 + Arg_0)) (3) Loat Proof [FINISHED, 326 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: l0(A, B) -> Com_1(l1(A, B)) :|: TRUE l1(A, B) -> Com_1(l1(A - 1, B + 1)) :|: A >= 1 l1(A, B) -> Com_1(l2(A, B)) :|: 0 >= A l2(A, B) -> Com_1(l2(A, B - 1)) :|: B >= 1 The start-symbols are:[l0_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([0, 1+max([Arg_1, Arg_1+max([0, 1+Arg_0])])])+max([2, 3+Arg_0]) {O(n)}) Initial Complexity Problem: Start: l0 Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: l0, l1, l2 Transitions: 0: l0->l1 1: l1->l1 2: l1->l2 3: l2->l2 Timebounds: Overall timebound: max([0, 1+max([Arg_1, Arg_1+max([0, 1+Arg_0])])])+max([2, 3+Arg_0]) {O(n)} 0: l0->l1: 1 {O(1)} 1: l1->l1: max([0, 1+Arg_0]) {O(n)} 2: l1->l2: 1 {O(1)} 3: l2->l2: max([0, 1+max([Arg_1, Arg_1+max([0, 1+Arg_0])])]) {O(n)} Costbounds: Overall costbound: max([0, 1+max([Arg_1, Arg_1+max([0, 1+Arg_0])])])+max([2, 3+Arg_0]) {O(n)} 0: l0->l1: 1 {O(1)} 1: l1->l1: max([0, 1+Arg_0]) {O(n)} 2: l1->l2: 1 {O(1)} 3: l2->l2: max([0, 1+max([Arg_1, Arg_1+max([0, 1+Arg_0])])]) {O(n)} Sizebounds: `Lower: 0: l0->l1, Arg_0: Arg_0 {O(n)} 0: l0->l1, Arg_1: Arg_1 {O(n)} 1: l1->l1, Arg_0: 0 {O(1)} 1: l1->l1, Arg_1: Arg_1 {O(n)} 2: l1->l2, Arg_0: min([0, Arg_0]) {O(n)} 2: l1->l2, Arg_1: Arg_1 {O(n)} 3: l2->l2, Arg_0: min([0, Arg_0]) {O(n)} 3: l2->l2, Arg_1: 0 {O(1)} `Upper: 0: l0->l1, Arg_0: Arg_0 {O(n)} 0: l0->l1, Arg_1: Arg_1 {O(n)} 1: l1->l1, Arg_0: Arg_0 {O(n)} 1: l1->l1, Arg_1: Arg_1+max([0, 1+Arg_0]) {O(n)} 2: l1->l2, Arg_0: 0 {O(1)} 2: l1->l2, Arg_1: max([Arg_1, Arg_1+max([0, 1+Arg_0])]) {O(n)} 3: l2->l2, Arg_0: 0 {O(1)} 3: l2->l2, Arg_1: max([Arg_1, Arg_1+max([0, 1+Arg_0])]) {O(n)} ---------------------------------------- (2) BOUNDS(1, max(1 + Arg_1, 1 + Arg_1 + nat(1 + Arg_0), 0) + max(2, 3 + Arg_0)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l0 0: l0 -> l1 : [], cost: 1 1: l1 -> l1 : A'=-1+A, B'=1+B, [ A>=1 ], cost: 1 2: l1 -> l2 : [ 0>=A ], cost: 1 3: l2 -> l2 : B'=-1+B, [ B>=1 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: l0 -> l1 : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: l1 -> l1 : A'=-1+A, B'=1+B, [ A>=1 ], cost: 1 Accelerated rule 1 with metering function A, yielding the new rule 4. Removing the simple loops: 1. Accelerating simple loops of location 2. Accelerating the following rules: 3: l2 -> l2 : B'=-1+B, [ B>=1 ], cost: 1 Accelerated rule 3 with metering function B, yielding the new rule 5. Removing the simple loops: 3. Accelerated all simple loops using metering functions (where possible): Start location: l0 0: l0 -> l1 : [], cost: 1 2: l1 -> l2 : [ 0>=A ], cost: 1 4: l1 -> l1 : A'=0, B'=A+B, [ A>=1 ], cost: A 5: l2 -> l2 : B'=0, [ B>=1 ], cost: B Chained accelerated rules (with incoming rules): Start location: l0 0: l0 -> l1 : [], cost: 1 6: l0 -> l1 : A'=0, B'=A+B, [ A>=1 ], cost: 1+A 2: l1 -> l2 : [ 0>=A ], cost: 1 7: l1 -> l2 : B'=0, [ 0>=A && B>=1 ], cost: 1+B Removed unreachable locations (and leaf rules with constant cost): Start location: l0 0: l0 -> l1 : [], cost: 1 6: l0 -> l1 : A'=0, B'=A+B, [ A>=1 ], cost: 1+A 7: l1 -> l2 : B'=0, [ 0>=A && B>=1 ], cost: 1+B Eliminated locations (on tree-shaped paths): Start location: l0 8: l0 -> l2 : B'=0, [ 0>=A && B>=1 ], cost: 2+B 9: l0 -> l2 : A'=0, B'=0, [ A>=1 && A+B>=1 ], cost: 2+2*A+B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l0 8: l0 -> l2 : B'=0, [ 0>=A && B>=1 ], cost: 2+B 9: l0 -> l2 : A'=0, B'=0, [ A>=1 && A+B>=1 ], cost: 2+2*A+B Computing asymptotic complexity for rule 8 Solved the limit problem by the following transformations: Created initial limit problem: 1-A (+/+!), B (+/+!), 2+B (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==0,B==n} resulting limit problem: [solved] Solution: A / 0 B / n Resulting cost 2+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 2+n Rule cost: 2+B Rule guard: [ 0>=A && B>=1 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)