/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 25 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 645 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval1(A, B, C) -> Com_1(eval2(A, B, C)) :|: A >= B + 1 eval2(A, B, C) -> Com_1(eval1(A, B + 1, C)) :|: A >= C + 1 eval2(A, B, C) -> Com_1(eval1(A, B, C + 1)) :|: A >= C + 1 eval2(A, B, C) -> Com_1(eval1(A - 1, B, C)) :|: C >= A start(A, B, C) -> Com_1(eval1(A, B, C)) :|: TRUE The start-symbols are:[start_3] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 6*Ar_0 + 4*Ar_1 + 2*Ar_2 + 2) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) eval1(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_0 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2 + 1)) [ Ar_0 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_2 >= Ar_0 ] (Comp: ?, Cost: 1) start(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: ?, Cost: 1) eval1(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_0 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2 + 1)) [ Ar_0 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_2 >= Ar_0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(eval1) = V_1 - V_3 Pol(eval2) = V_1 - V_3 Pol(start) = V_1 - V_3 Pol(koat_start) = V_1 - V_3 orients all transitions weakly and the transition eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2 + 1)) [ Ar_0 >= Ar_2 + 1 ] strictly and produces the following problem: 3: T: (Comp: ?, Cost: 1) eval1(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_0 >= Ar_2 + 1 ] (Comp: Ar_0 + Ar_2, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2 + 1)) [ Ar_0 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_2 >= Ar_0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 3 to obtain the following invariants: For symbol eval2: X_1 - X_2 - 1 >= 0 This yielded the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_2 >= Ar_0 ] (Comp: Ar_0 + Ar_2, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2 + 1)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_0 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_0 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) eval1(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 + 1 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = V_1 - V_2 Pol(start) = V_1 - V_2 Pol(eval1) = V_1 - V_2 Pol(eval2) = V_1 - V_2 orients all transitions weakly and the transitions eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_0 >= Ar_2 + 1 ] eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_2 >= Ar_0 ] strictly and produces the following problem: 5: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) (Comp: Ar_0 + Ar_1, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_2 >= Ar_0 ] (Comp: Ar_0 + Ar_2, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2 + 1)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_0 >= Ar_2 + 1 ] (Comp: Ar_0 + Ar_1, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_0 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) eval1(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 + 1 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 5 produces the following problem: 6: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2)) (Comp: Ar_0 + Ar_1, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_2 >= Ar_0 ] (Comp: Ar_0 + Ar_2, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1, Ar_2 + 1)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_0 >= Ar_2 + 1 ] (Comp: Ar_0 + Ar_1, Cost: 1) eval2(Ar_0, Ar_1, Ar_2) -> Com_1(eval1(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_0 >= Ar_2 + 1 ] (Comp: 3*Ar_0 + 2*Ar_1 + Ar_2 + 1, Cost: 1) eval1(Ar_0, Ar_1, Ar_2) -> Com_1(eval2(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 + 1 ] start location: koat_start leaf cost: 0 Complexity upper bound 6*Ar_0 + 4*Ar_1 + 2*Ar_2 + 2 Time: 0.110 sec (SMT: 0.096 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: eval1 -> eval2 : [ A>=1+B ], cost: 1 1: eval2 -> eval1 : B'=1+B, [ A>=1+C ], cost: 1 2: eval2 -> eval1 : C'=1+C, [ A>=1+C ], cost: 1 3: eval2 -> eval1 : A'=-1+A, [ C>=A ], cost: 1 4: start -> eval1 : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 4: start -> eval1 : [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on tree-shaped paths): Start location: start 5: eval1 -> eval1 : B'=1+B, [ A>=1+B && A>=1+C ], cost: 2 6: eval1 -> eval1 : C'=1+C, [ A>=1+B && A>=1+C ], cost: 2 7: eval1 -> eval1 : A'=-1+A, [ A>=1+B && C>=A ], cost: 2 4: start -> eval1 : [], cost: 1 Accelerating simple loops of location 0. Accelerating the following rules: 5: eval1 -> eval1 : B'=1+B, [ A>=1+B && A>=1+C ], cost: 2 6: eval1 -> eval1 : C'=1+C, [ A>=1+B && A>=1+C ], cost: 2 7: eval1 -> eval1 : A'=-1+A, [ A>=1+B && C>=A ], cost: 2 Accelerated rule 5 with metering function A-B, yielding the new rule 8. Accelerated rule 6 with metering function -C+A, yielding the new rule 9. Accelerated rule 7 with metering function A-B, yielding the new rule 10. Removing the simple loops: 5 6 7. Accelerated all simple loops using metering functions (where possible): Start location: start 8: eval1 -> eval1 : B'=A, [ A>=1+B && A>=1+C ], cost: 2*A-2*B 9: eval1 -> eval1 : C'=A, [ A>=1+B && A>=1+C ], cost: -2*C+2*A 10: eval1 -> eval1 : A'=B, [ A>=1+B && C>=A ], cost: 2*A-2*B 4: start -> eval1 : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 4: start -> eval1 : [], cost: 1 11: start -> eval1 : B'=A, [ A>=1+B && A>=1+C ], cost: 1+2*A-2*B 12: start -> eval1 : C'=A, [ A>=1+B && A>=1+C ], cost: 1-2*C+2*A 13: start -> eval1 : A'=B, [ A>=1+B && C>=A ], cost: 1+2*A-2*B Removed unreachable locations (and leaf rules with constant cost): Start location: start 11: start -> eval1 : B'=A, [ A>=1+B && A>=1+C ], cost: 1+2*A-2*B 12: start -> eval1 : C'=A, [ A>=1+B && A>=1+C ], cost: 1-2*C+2*A 13: start -> eval1 : A'=B, [ A>=1+B && C>=A ], cost: 1+2*A-2*B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 11: start -> eval1 : B'=A, [ A>=1+B && A>=1+C ], cost: 1+2*A-2*B 12: start -> eval1 : C'=A, [ A>=1+B && A>=1+C ], cost: 1-2*C+2*A 13: start -> eval1 : A'=B, [ A>=1+B && C>=A ], cost: 1+2*A-2*B Computing asymptotic complexity for rule 11 Solved the limit problem by the following transformations: Created initial limit problem: -C+A (+/+!), 1+2*A-2*B (+), A-B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {C==0,A==1,B==-n} resulting limit problem: [solved] Solution: C / 0 A / 1 B / -n Resulting cost 3+2*n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 3+2*n Rule cost: 1+2*A-2*B Rule guard: [ A>=1+B && A>=1+C ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)