/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 16 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 322 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval(A, B) -> Com_1(eval(A, B + 1)) :|: A >= B + 1 eval(A, B) -> Com_1(eval(A, B + 1)) :|: B >= A + 1 && A >= B + 1 eval(A, B) -> Com_1(eval(A + 1, B)) :|: A >= B + 1 && B >= A eval(A, B) -> Com_1(eval(A + 1, B)) :|: B >= A + 1 && B >= A start(A, B) -> Com_1(eval(A, B)) :|: TRUE The start-symbols are:[start_2] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 2*Ar_0 + 2*Ar_1 + 2) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 + 1)) [ Ar_1 >= Ar_0 + 1 /\ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 + 1, Ar_1)) [ Ar_0 >= Ar_1 + 1 /\ Ar_1 >= Ar_0 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 + 1, Ar_1)) [ Ar_1 >= Ar_0 + 1 /\ Ar_1 >= Ar_0 ] (Comp: ?, Cost: 1) start(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Testing for reachability in the complexity graph removes the following transitions from problem 1: eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 + 1)) [ Ar_1 >= Ar_0 + 1 /\ Ar_0 >= Ar_1 + 1 ] eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 + 1, Ar_1)) [ Ar_0 >= Ar_1 + 1 /\ Ar_1 >= Ar_0 ] We thus obtain the following problem: 2: T: (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 + 1, Ar_1)) [ Ar_1 >= Ar_0 + 1 /\ Ar_1 >= Ar_0 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) start(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 + 1, Ar_1)) [ Ar_1 >= Ar_0 + 1 /\ Ar_1 >= Ar_0 ] (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(eval) = V_1 - V_2 and size complexities S("koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ]", 0-1) = Ar_1 S("start(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1))", 0-0) = Ar_0 S("start(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1))", 0-1) = Ar_1 S("eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 1 ]", 0-0) = Ar_0 S("eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 1 ]", 0-1) = ? S("eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 + 1, Ar_1)) [ Ar_1 >= Ar_0 + 1 /\\ Ar_1 >= Ar_0 ]", 0-0) = ? S("eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 + 1, Ar_1)) [ Ar_1 >= Ar_0 + 1 /\\ Ar_1 >= Ar_0 ]", 0-1) = Ar_1 orients the transitions eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 1 ] weakly and the transition eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 1 ] strictly and produces the following problem: 4: T: (Comp: ?, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 + 1, Ar_1)) [ Ar_1 >= Ar_0 + 1 /\ Ar_1 >= Ar_0 ] (Comp: Ar_0 + Ar_1, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(eval) = -V_1 + V_2 + 1 and size complexities S("koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ]", 0-1) = Ar_1 S("start(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1))", 0-0) = Ar_0 S("start(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1))", 0-1) = Ar_1 S("eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 1 ]", 0-0) = Ar_0 S("eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 1 ]", 0-1) = 2*Ar_0 + 2*Ar_1 S("eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 + 1, Ar_1)) [ Ar_1 >= Ar_0 + 1 /\\ Ar_1 >= Ar_0 ]", 0-0) = ? S("eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 + 1, Ar_1)) [ Ar_1 >= Ar_0 + 1 /\\ Ar_1 >= Ar_0 ]", 0-1) = Ar_1 orients the transitions eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 + 1, Ar_1)) [ Ar_1 >= Ar_0 + 1 /\ Ar_1 >= Ar_0 ] weakly and the transition eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 + 1, Ar_1)) [ Ar_1 >= Ar_0 + 1 /\ Ar_1 >= Ar_0 ] strictly and produces the following problem: 5: T: (Comp: Ar_0 + Ar_1 + 1, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0 + 1, Ar_1)) [ Ar_1 >= Ar_0 + 1 /\ Ar_1 >= Ar_0 ] (Comp: Ar_0 + Ar_1, Cost: 1) eval(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1 + 1)) [ Ar_0 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1) -> Com_1(eval(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 2*Ar_0 + 2*Ar_1 + 2 Time: 0.047 sec (SMT: 0.039 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: eval -> eval : B'=1+B, [ A>=1+B ], cost: 1 1: eval -> eval : B'=1+B, [ B>=1+A && A>=1+B ], cost: 1 2: eval -> eval : A'=1+A, [ A>=1+B && B>=A ], cost: 1 3: eval -> eval : A'=1+A, [ B>=1+A && B>=A ], cost: 1 4: start -> eval : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 4: start -> eval : [], cost: 1 Removed rules with unsatisfiable guard: Start location: start 0: eval -> eval : B'=1+B, [ A>=1+B ], cost: 1 3: eval -> eval : A'=1+A, [ B>=1+A && B>=A ], cost: 1 4: start -> eval : [], cost: 1 Simplified all rules, resulting in: Start location: start 0: eval -> eval : B'=1+B, [ A>=1+B ], cost: 1 3: eval -> eval : A'=1+A, [ B>=1+A ], cost: 1 4: start -> eval : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: eval -> eval : B'=1+B, [ A>=1+B ], cost: 1 3: eval -> eval : A'=1+A, [ B>=1+A ], cost: 1 Accelerated rule 0 with metering function A-B, yielding the new rule 5. Accelerated rule 3 with metering function -A+B, yielding the new rule 6. Removing the simple loops: 0 3. Accelerated all simple loops using metering functions (where possible): Start location: start 5: eval -> eval : B'=A, [ A>=1+B ], cost: A-B 6: eval -> eval : A'=B, [ B>=1+A ], cost: -A+B 4: start -> eval : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 4: start -> eval : [], cost: 1 7: start -> eval : B'=A, [ A>=1+B ], cost: 1+A-B 8: start -> eval : A'=B, [ B>=1+A ], cost: 1-A+B Removed unreachable locations (and leaf rules with constant cost): Start location: start 7: start -> eval : B'=A, [ A>=1+B ], cost: 1+A-B 8: start -> eval : A'=B, [ B>=1+A ], cost: 1-A+B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 7: start -> eval : B'=A, [ A>=1+B ], cost: 1+A-B 8: start -> eval : A'=B, [ B>=1+A ], cost: 1-A+B Computing asymptotic complexity for rule 7 Solved the limit problem by the following transformations: Created initial limit problem: A-B (+/+!), 1+A-B (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==0,B==-n} resulting limit problem: [solved] Solution: A / 0 B / -n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+A-B Rule guard: [ A>=1+B ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)