/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- MAYBE proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, INF). (0) CpxIntTrs (1) Loat Proof [FINISHED, 523 ms] (2) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval(A, B) -> Com_1(eval(D, B)) :|: A >= 0 && B >= 0 && B >= A + 1 && A + B >= 2 * C && 3 * C >= A + B + 1 && D >= C + 1 && A + B >= 2 * E && 3 * E >= A + B + 1 && E + 1 >= D eval(A, B) -> Com_1(eval(A, D)) :|: A >= 0 && B >= 0 && B >= A + 1 && A + B >= 2 * C && 3 * C >= A + B + 1 && D >= C && A + B >= 2 * E && 3 * E >= A + B + 1 && E >= D start(A, B) -> Com_1(eval(A, B)) :|: TRUE The start-symbols are:[start_2] ---------------------------------------- (1) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: eval -> eval : A'=free_1, [ A>=0 && B>=0 && B>=1+A && A+B>=2*free && 3*free>=1+A+B && free_1>=1+free && A+B>=2*free_2 && 3*free_2>=1+A+B && 1+free_2>=free_1 ], cost: 1 1: eval -> eval : B'=free_4, [ A>=0 && B>=0 && B>=1+A && A+B>=2*free_3 && 3*free_3>=1+A+B && free_4>=free_3 && A+B>=2*free_5 && 3*free_5>=1+A+B && free_5>=free_4 ], cost: 1 2: start -> eval : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 2: start -> eval : [], cost: 1 Simplified all rules, resulting in: Start location: start 0: eval -> eval : A'=free_1, [ A>=0 && B>=1+A && 3*free>=1+A+B && free_1>=1+free && A+B>=2*free_2 && 3*free_2>=1+A+B && 1+free_2>=free_1 ], cost: 1 1: eval -> eval : B'=free_4, [ A>=0 && B>=1+A && 3*free_3>=1+A+B && free_4>=free_3 && A+B>=2*free_5 && 3*free_5>=1+A+B && free_5>=free_4 ], cost: 1 2: start -> eval : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: eval -> eval : A'=free_1, [ A>=0 && B>=1+A && 3*free>=1+A+B && free_1>=1+free && A+B>=2*free_2 && 3*free_2>=1+A+B && 1+free_2>=free_1 ], cost: 1 1: eval -> eval : B'=free_4, [ A>=0 && B>=1+A && 3*free_3>=1+A+B && free_4>=free_3 && A+B>=2*free_5 && 3*free_5>=1+A+B && free_5>=free_4 ], cost: 1 During metering: Instantiating temporary variables by {free==-1+free_1,free_1==1+free,free_2==-1+free_1} Accelerated rule 0 with metering function 1+free-free_1, yielding the new rule 3. During metering: Instantiating temporary variables by {free_4==free_5,free_5==free_4,free_3==free_4} Accelerated rule 1 with metering function free_4-free_5, yielding the new rule 4. Removing the simple loops: 0 1. Accelerated all simple loops using metering functions (where possible): Start location: start 3: eval -> eval : A'=1+free, [ A>=0 && B>=1+A && -3+3*free_1>=1+A+B && A+B>=-2+2*free_1 && free_1>=1+free && 1+free-free_1>=1 ], cost: 1+free-free_1 4: eval -> eval : B'=free_5, [ A>=0 && B>=1+A && 3*free_4>=1+A+B && free_5>=free_4 && A+B>=2*free_4 && free_4-free_5>=1 ], cost: free_4-free_5 2: start -> eval : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 2: start -> eval : [], cost: 1 Removed unreachable locations (and leaf rules with constant cost): Start location: start ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?) ---------------------------------------- (2) BOUNDS(1, INF)