/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 29 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 145 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval(A, B, C) -> Com_1(eval(A, B + 1, C + 1)) :|: A >= B + C + 1 start(A, B, C) -> Com_1(eval(A, B, C)) :|: TRUE The start-symbols are:[start_3] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, Ar_0 + Ar_1 + Ar_2 + 1) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) eval(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1 + 1, Ar_2 + 1)) [ Ar_0 >= Ar_1 + Ar_2 + 1 ] (Comp: ?, Cost: 1) start(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: ?, Cost: 1) eval(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1 + 1, Ar_2 + 1)) [ Ar_0 >= Ar_1 + Ar_2 + 1 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(eval) = V_1 - V_2 - V_3 Pol(start) = V_1 - V_2 - V_3 Pol(koat_start) = V_1 - V_2 - V_3 orients all transitions weakly and the transition eval(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1 + 1, Ar_2 + 1)) [ Ar_0 >= Ar_1 + Ar_2 + 1 ] strictly and produces the following problem: 3: T: (Comp: Ar_0 + Ar_1 + Ar_2, Cost: 1) eval(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1 + 1, Ar_2 + 1)) [ Ar_0 >= Ar_1 + Ar_2 + 1 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2) -> Com_1(eval(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound Ar_0 + Ar_1 + Ar_2 + 1 Time: 0.027 sec (SMT: 0.024 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: eval -> eval : B'=1+B, C'=1+C, [ A>=1+C+B ], cost: 1 1: start -> eval : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 1: start -> eval : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: eval -> eval : B'=1+B, C'=1+C, [ A>=1+C+B ], cost: 1 Accelerated rule 0 with metering function meter (where 2*meter==-C+A-B), yielding the new rule 2. Removing the simple loops: 0. Accelerated all simple loops using metering functions (where possible): Start location: start 2: eval -> eval : B'=meter+B, C'=meter+C, [ A>=1+C+B && 2*meter==-C+A-B && meter>=1 ], cost: meter 1: start -> eval : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 1: start -> eval : [], cost: 1 3: start -> eval : B'=meter+B, C'=meter+C, [ A>=1+C+B && 2*meter==-C+A-B && meter>=1 ], cost: 1+meter Removed unreachable locations (and leaf rules with constant cost): Start location: start 3: start -> eval : B'=meter+B, C'=meter+C, [ A>=1+C+B && 2*meter==-C+A-B && meter>=1 ], cost: 1+meter ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 3: start -> eval : B'=meter+B, C'=meter+C, [ A>=1+C+B && 2*meter==-C+A-B && meter>=1 ], cost: 1+meter Computing asymptotic complexity for rule 3 Solved the limit problem by the following transformations: Created initial limit problem: -C+A-B (+/+!), 1+meter (+), 1+2*meter+C-A+B (+/+!), 1-2*meter-C+A-B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {meter==n,C==0,A==2*n,B==0} resulting limit problem: [solved] Solution: meter / n C / 0 A / 2*n B / 0 Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+meter Rule guard: [ A>=1+C+B && 2*meter==-C+A-B ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)