/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, INF). (0) CpxIntTrs (1) Loat Proof [FINISHED, 434 ms] (2) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval(A, B) -> Com_1(eval(A - 1, C)) :|: A >= 1 && B >= 1 eval(A, B) -> Com_1(eval(A, B - 1)) :|: A >= 1 && B >= 1 start(A, B) -> Com_1(eval(A, B)) :|: TRUE The start-symbols are:[start_2] ---------------------------------------- (1) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: eval -> eval : A'=-1+A, B'=free, [ A>=1 && B>=1 ], cost: 1 1: eval -> eval : B'=-1+B, [ A>=1 && B>=1 ], cost: 1 2: start -> eval : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 2: start -> eval : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: eval -> eval : A'=-1+A, B'=free, [ A>=1 && B>=1 ], cost: 1 1: eval -> eval : B'=-1+B, [ A>=1 && B>=1 ], cost: 1 Accelerated rule 0 with metering function A (after strengthening guard), yielding the new rule 3. Accelerated rule 1 with metering function B, yielding the new rule 4. Removing the simple loops: 1. Accelerated all simple loops using metering functions (where possible): Start location: start 0: eval -> eval : A'=-1+A, B'=free, [ A>=1 && B>=1 ], cost: 1 3: eval -> eval : A'=0, B'=free, [ A>=1 && B>=1 && free>=1 ], cost: A 4: eval -> eval : B'=0, [ A>=1 && B>=1 ], cost: B 2: start -> eval : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 2: start -> eval : [], cost: 1 5: start -> eval : A'=-1+A, B'=free, [ A>=1 && B>=1 ], cost: 2 6: start -> eval : A'=0, B'=free, [ A>=1 && B>=1 && free>=1 ], cost: 1+A 7: start -> eval : B'=0, [ A>=1 && B>=1 ], cost: 1+B Removed unreachable locations (and leaf rules with constant cost): Start location: start 6: start -> eval : A'=0, B'=free, [ A>=1 && B>=1 && free>=1 ], cost: 1+A 7: start -> eval : B'=0, [ A>=1 && B>=1 ], cost: 1+B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 6: start -> eval : A'=0, B'=free, [ A>=1 && B>=1 && free>=1 ], cost: 1+A 7: start -> eval : B'=0, [ A>=1 && B>=1 ], cost: 1+B Computing asymptotic complexity for rule 6 Solved the limit problem by the following transformations: Created initial limit problem: free (+/+!), A (+/+!), B (+/+!), 1+A (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {free==n,A==n,B==n} resulting limit problem: [solved] Solution: free / n A / n B / n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+A Rule guard: [ A>=1 && B>=1 && free>=1 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (2) BOUNDS(n^1, INF)