/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 17 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 105 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: sumto(A, B) -> Com_1(end(A, B)) :|: A >= B + 1 sumto(A, B) -> Com_1(sumto(A + 1, B)) :|: B >= A start(A, B) -> Com_1(sumto(A, B)) :|: TRUE The start-symbols are:[start_2] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, Ar_0 + Ar_1 + 3) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) sumto(Ar_0, Ar_1) -> Com_1(end(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) sumto(Ar_0, Ar_1) -> Com_1(sumto(Ar_0 + 1, Ar_1)) [ Ar_1 >= Ar_0 ] (Comp: ?, Cost: 1) start(Ar_0, Ar_1) -> Com_1(sumto(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: ?, Cost: 1) sumto(Ar_0, Ar_1) -> Com_1(end(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) sumto(Ar_0, Ar_1) -> Com_1(sumto(Ar_0 + 1, Ar_1)) [ Ar_1 >= Ar_0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1) -> Com_1(sumto(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(sumto) = 1 Pol(end) = 0 Pol(start) = 1 Pol(koat_start) = 1 orients all transitions weakly and the transition sumto(Ar_0, Ar_1) -> Com_1(end(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 + 1 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) sumto(Ar_0, Ar_1) -> Com_1(end(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) sumto(Ar_0, Ar_1) -> Com_1(sumto(Ar_0 + 1, Ar_1)) [ Ar_1 >= Ar_0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1) -> Com_1(sumto(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(sumto) = -V_1 + V_2 + 1 Pol(end) = -V_1 + V_2 Pol(start) = -V_1 + V_2 + 1 Pol(koat_start) = -V_1 + V_2 + 1 orients all transitions weakly and the transition sumto(Ar_0, Ar_1) -> Com_1(sumto(Ar_0 + 1, Ar_1)) [ Ar_1 >= Ar_0 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) sumto(Ar_0, Ar_1) -> Com_1(end(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 + 1 ] (Comp: Ar_0 + Ar_1 + 1, Cost: 1) sumto(Ar_0, Ar_1) -> Com_1(sumto(Ar_0 + 1, Ar_1)) [ Ar_1 >= Ar_0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1) -> Com_1(sumto(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(start(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound Ar_0 + Ar_1 + 3 Time: 0.022 sec (SMT: 0.019 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: sumto -> end : [ A>=1+B ], cost: 1 1: sumto -> sumto : A'=1+A, [ B>=A ], cost: 1 2: start -> sumto : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 2: start -> sumto : [], cost: 1 Removed unreachable and leaf rules: Start location: start 1: sumto -> sumto : A'=1+A, [ B>=A ], cost: 1 2: start -> sumto : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 1: sumto -> sumto : A'=1+A, [ B>=A ], cost: 1 Accelerated rule 1 with metering function 1-A+B, yielding the new rule 3. Removing the simple loops: 1. Accelerated all simple loops using metering functions (where possible): Start location: start 3: sumto -> sumto : A'=1+B, [ B>=A ], cost: 1-A+B 2: start -> sumto : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 2: start -> sumto : [], cost: 1 4: start -> sumto : A'=1+B, [ B>=A ], cost: 2-A+B Removed unreachable locations (and leaf rules with constant cost): Start location: start 4: start -> sumto : A'=1+B, [ B>=A ], cost: 2-A+B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 4: start -> sumto : A'=1+B, [ B>=A ], cost: 2-A+B Computing asymptotic complexity for rule 4 Solved the limit problem by the following transformations: Created initial limit problem: 2-A+B (+), 1-A+B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==0,B==n} resulting limit problem: [solved] Solution: A / 0 B / n Resulting cost 2+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 2+n Rule cost: 2-A+B Rule guard: [ B>=A ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)