/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 2 + Arg_0 + -1 * Arg_1) + nat(2 + 2 * Arg_2 + -2 * Arg_3) + nat(1 + Arg_0 + -1 * Arg_1)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 853 ms] (2) BOUNDS(1, max(1, 2 + Arg_0 + -1 * Arg_1) + nat(2 + 2 * Arg_2 + -2 * Arg_3) + nat(1 + Arg_0 + -1 * Arg_1)) (3) Loat Proof [FINISHED, 922 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: eval(A, B, C, D, E) -> Com_1(eval(A, B + 1, C, D, E + 1)) :|: A >= B + 1 && C >= D + 1 eval(A, B, C, D, E) -> Com_1(eval(A, B, C, D + 1, E + 1)) :|: A >= B + 1 && C >= D + 1 eval(A, B, C, D, E) -> Com_1(eval(A, B, C, D + 1, E + 1)) :|: B >= A && C >= D + 1 eval(A, B, C, D, E) -> Com_1(eval(A, B + 1, C, D, E + 1)) :|: A >= B + 1 && D >= C start(A, B, C, D, E) -> Com_1(eval(A, B, C, D, E)) :|: TRUE The start-symbols are:[start_5] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, 1+max([0, 1+Arg_0-Arg_1])+max([0, 1+Arg_2-Arg_3])+max([0, 1+Arg_2-Arg_3])+max([0, 1+Arg_0-Arg_1]) {O(n)}) Initial Complexity Problem: Start: start Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4 Temp_Vars: Locations: eval, start Transitions: 0: eval->eval 1: eval->eval 2: eval->eval 3: eval->eval 4: start->eval Timebounds: Overall timebound: 1+max([0, 1+Arg_0-Arg_1])+max([0, 1+Arg_2-Arg_3])+max([0, 1+Arg_2-Arg_3])+max([0, 1+Arg_0-Arg_1]) {O(n)} 0: eval->eval: max([0, 1+Arg_0-Arg_1]) {O(n)} 1: eval->eval: max([0, 1+Arg_2-Arg_3]) {O(n)} 2: eval->eval: max([0, 1+Arg_2-Arg_3]) {O(n)} 3: eval->eval: max([0, 1+Arg_0-Arg_1]) {O(n)} 4: start->eval: 1 {O(1)} Costbounds: Overall costbound: 1+max([0, 1+Arg_0-Arg_1])+max([0, 1+Arg_2-Arg_3])+max([0, 1+Arg_2-Arg_3])+max([0, 1+Arg_0-Arg_1]) {O(n)} 0: eval->eval: max([0, 1+Arg_0-Arg_1]) {O(n)} 1: eval->eval: max([0, 1+Arg_2-Arg_3]) {O(n)} 2: eval->eval: max([0, 1+Arg_2-Arg_3]) {O(n)} 3: eval->eval: max([0, 1+Arg_0-Arg_1]) {O(n)} 4: start->eval: 1 {O(1)} Sizebounds: `Lower: 0: eval->eval, Arg_0: Arg_0 {O(n)} 0: eval->eval, Arg_1: Arg_1 {O(n)} 0: eval->eval, Arg_2: Arg_2 {O(n)} 0: eval->eval, Arg_3: Arg_3 {O(n)} 0: eval->eval, Arg_4: Arg_4 {O(n)} 1: eval->eval, Arg_0: Arg_0 {O(n)} 1: eval->eval, Arg_1: Arg_1 {O(n)} 1: eval->eval, Arg_2: Arg_2 {O(n)} 1: eval->eval, Arg_3: Arg_3 {O(n)} 1: eval->eval, Arg_4: Arg_4 {O(n)} 2: eval->eval, Arg_0: Arg_0 {O(n)} 2: eval->eval, Arg_1: Arg_1 {O(n)} 2: eval->eval, Arg_2: Arg_2 {O(n)} 2: eval->eval, Arg_3: Arg_3 {O(n)} 2: eval->eval, Arg_4: Arg_4 {O(n)} 3: eval->eval, Arg_0: Arg_0 {O(n)} 3: eval->eval, Arg_1: Arg_1 {O(n)} 3: eval->eval, Arg_2: Arg_2 {O(n)} 3: eval->eval, Arg_3: Arg_3 {O(n)} 3: eval->eval, Arg_4: Arg_4 {O(n)} 4: start->eval, Arg_0: Arg_0 {O(n)} 4: start->eval, Arg_1: Arg_1 {O(n)} 4: start->eval, Arg_2: Arg_2 {O(n)} 4: start->eval, Arg_3: Arg_3 {O(n)} 4: start->eval, Arg_4: Arg_4 {O(n)} `Upper: 0: eval->eval, Arg_0: Arg_0 {O(n)} 0: eval->eval, Arg_1: Arg_1+max([0, 1+Arg_0-Arg_1]) {O(n)} 0: eval->eval, Arg_2: Arg_2 {O(n)} 0: eval->eval, Arg_3: Arg_3+max([0, 1+Arg_2-Arg_3]) {O(n)} 0: eval->eval, Arg_4: Arg_4+max([0, 1+Arg_2-Arg_3])+max([0, 1+Arg_0-Arg_1]) {O(n)} 1: eval->eval, Arg_0: Arg_0 {O(n)} 1: eval->eval, Arg_1: Arg_1+max([0, 1+Arg_0-Arg_1]) {O(n)} 1: eval->eval, Arg_2: Arg_2 {O(n)} 1: eval->eval, Arg_3: Arg_3+max([0, 1+Arg_2-Arg_3]) {O(n)} 1: eval->eval, Arg_4: Arg_4+max([0, 1+Arg_2-Arg_3])+max([0, 1+Arg_0-Arg_1]) {O(n)} 2: eval->eval, Arg_0: Arg_0 {O(n)} 2: eval->eval, Arg_1: max([Arg_1, Arg_1+max([0, 1+Arg_0-Arg_1])]) {O(n)} 2: eval->eval, Arg_2: Arg_2 {O(n)} 2: eval->eval, Arg_3: max([Arg_3, Arg_3+max([0, 1+Arg_2-Arg_3])])+max([0, 1+Arg_2-Arg_3]) {O(n)} 2: eval->eval, Arg_4: max([Arg_4, Arg_4+max([0, 1+Arg_2-Arg_3])+max([0, 1+Arg_0-Arg_1])])+max([0, 1+Arg_2-Arg_3]) {O(n)} 3: eval->eval, Arg_0: Arg_0 {O(n)} 3: eval->eval, Arg_1: max([Arg_1, Arg_1+max([0, 1+Arg_0-Arg_1])])+max([0, 1+Arg_0-Arg_1]) {O(n)} 3: eval->eval, Arg_2: Arg_2 {O(n)} 3: eval->eval, Arg_3: max([Arg_3, Arg_3+max([0, 1+Arg_2-Arg_3])]) {O(n)} 3: eval->eval, Arg_4: max([Arg_4, Arg_4+max([0, 1+Arg_2-Arg_3])+max([0, 1+Arg_0-Arg_1])])+max([0, 1+Arg_0-Arg_1]) {O(n)} 4: start->eval, Arg_0: Arg_0 {O(n)} 4: start->eval, Arg_1: Arg_1 {O(n)} 4: start->eval, Arg_2: Arg_2 {O(n)} 4: start->eval, Arg_3: Arg_3 {O(n)} 4: start->eval, Arg_4: Arg_4 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(1, 2 + Arg_0 + -1 * Arg_1) + nat(2 + 2 * Arg_2 + -2 * Arg_3) + nat(1 + Arg_0 + -1 * Arg_1)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start 0: eval -> eval : B'=1+B, E'=1+E, [ A>=1+B && C>=1+D ], cost: 1 1: eval -> eval : D'=1+D, E'=1+E, [ A>=1+B && C>=1+D ], cost: 1 2: eval -> eval : D'=1+D, E'=1+E, [ B>=A && C>=1+D ], cost: 1 3: eval -> eval : B'=1+B, E'=1+E, [ A>=1+B && D>=C ], cost: 1 4: start -> eval : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 4: start -> eval : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: eval -> eval : B'=1+B, E'=1+E, [ A>=1+B && C>=1+D ], cost: 1 1: eval -> eval : D'=1+D, E'=1+E, [ A>=1+B && C>=1+D ], cost: 1 2: eval -> eval : D'=1+D, E'=1+E, [ B>=A && C>=1+D ], cost: 1 3: eval -> eval : B'=1+B, E'=1+E, [ A>=1+B && D>=C ], cost: 1 Accelerated rule 0 with metering function A-B, yielding the new rule 5. Accelerated rule 1 with metering function C-D, yielding the new rule 6. Accelerated rule 2 with metering function C-D, yielding the new rule 7. Accelerated rule 3 with metering function A-B, yielding the new rule 8. Removing the simple loops: 0 1 2 3. Accelerated all simple loops using metering functions (where possible): Start location: start 5: eval -> eval : B'=A, E'=A+E-B, [ A>=1+B && C>=1+D ], cost: A-B 6: eval -> eval : D'=C, E'=C-D+E, [ A>=1+B && C>=1+D ], cost: C-D 7: eval -> eval : D'=C, E'=C-D+E, [ B>=A && C>=1+D ], cost: C-D 8: eval -> eval : B'=A, E'=A+E-B, [ A>=1+B && D>=C ], cost: A-B 4: start -> eval : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start 4: start -> eval : [], cost: 1 9: start -> eval : B'=A, E'=A+E-B, [ A>=1+B && C>=1+D ], cost: 1+A-B 10: start -> eval : D'=C, E'=C-D+E, [ A>=1+B && C>=1+D ], cost: 1+C-D 11: start -> eval : D'=C, E'=C-D+E, [ B>=A && C>=1+D ], cost: 1+C-D 12: start -> eval : B'=A, E'=A+E-B, [ A>=1+B && D>=C ], cost: 1+A-B Removed unreachable locations (and leaf rules with constant cost): Start location: start 9: start -> eval : B'=A, E'=A+E-B, [ A>=1+B && C>=1+D ], cost: 1+A-B 10: start -> eval : D'=C, E'=C-D+E, [ A>=1+B && C>=1+D ], cost: 1+C-D 11: start -> eval : D'=C, E'=C-D+E, [ B>=A && C>=1+D ], cost: 1+C-D 12: start -> eval : B'=A, E'=A+E-B, [ A>=1+B && D>=C ], cost: 1+A-B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start 9: start -> eval : B'=A, E'=A+E-B, [ A>=1+B && C>=1+D ], cost: 1+A-B 10: start -> eval : D'=C, E'=C-D+E, [ A>=1+B && C>=1+D ], cost: 1+C-D 11: start -> eval : D'=C, E'=C-D+E, [ B>=A && C>=1+D ], cost: 1+C-D 12: start -> eval : B'=A, E'=A+E-B, [ A>=1+B && D>=C ], cost: 1+A-B Computing asymptotic complexity for rule 9 Solved the limit problem by the following transformations: Created initial limit problem: C-D (+/+!), A-B (+/+!), 1+A-B (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {C==1,D==0,A==0,B==-n} resulting limit problem: [solved] Solution: C / 1 D / 0 A / 0 B / -n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+A-B Rule guard: [ A>=1+B && C>=1+D ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)