/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 16 ms] (2) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: l0(A, B) -> Com_1(l1(A, B)) :|: TRUE l1(A, B) -> Com_1(l1(A, B - A - A + 1)) :|: B <= A && A + B >= 1 The start-symbols are:[l0_2] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 3) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) l0(Ar_0, Ar_1) -> Com_1(l1(Ar_0, Ar_1)) (Comp: ?, Cost: 1) l1(Ar_0, Ar_1) -> Com_1(l1(Ar_0, Ar_1 - 2*Ar_0 + 1)) [ Ar_0 >= Ar_1 /\ Ar_0 + Ar_1 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(l0(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) l0(Ar_0, Ar_1) -> Com_1(l1(Ar_0, Ar_1)) (Comp: ?, Cost: 1) l1(Ar_0, Ar_1) -> Com_1(l1(Ar_0, Ar_1 - 2*Ar_0 + 1)) [ Ar_0 >= Ar_1 /\ Ar_0 + Ar_1 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(l0(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 By chaining the transition l0(Ar_0, Ar_1) -> Com_1(l1(Ar_0, Ar_1)) with all transitions in problem 2, the following new transition is obtained: l0(Ar_0, Ar_1) -> Com_1(l1(Ar_0, Ar_1 - 2*Ar_0 + 1)) [ Ar_0 >= Ar_1 /\ Ar_0 + Ar_1 >= 1 ] We thus obtain the following problem: 3: T: (Comp: 1, Cost: 2) l0(Ar_0, Ar_1) -> Com_1(l1(Ar_0, Ar_1 - 2*Ar_0 + 1)) [ Ar_0 >= Ar_1 /\ Ar_0 + Ar_1 >= 1 ] (Comp: ?, Cost: 1) l1(Ar_0, Ar_1) -> Com_1(l1(Ar_0, Ar_1 - 2*Ar_0 + 1)) [ Ar_0 >= Ar_1 /\ Ar_0 + Ar_1 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(l0(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 By chaining the transition l0(Ar_0, Ar_1) -> Com_1(l1(Ar_0, Ar_1 - 2*Ar_0 + 1)) [ Ar_0 >= Ar_1 /\ Ar_0 + Ar_1 >= 1 ] with all transitions in problem 3, the following new transition is obtained: l0(Ar_0, Ar_1) -> Com_1(l1(Ar_0, Ar_1 - 4*Ar_0 + 2)) [ Ar_0 >= Ar_1 /\ Ar_0 + Ar_1 >= 1 /\ Ar_0 >= Ar_1 - 2*Ar_0 + 1 /\ -Ar_0 + Ar_1 + 1 >= 1 ] We thus obtain the following problem: 4: T: (Comp: 1, Cost: 3) l0(Ar_0, Ar_1) -> Com_1(l1(Ar_0, Ar_1 - 4*Ar_0 + 2)) [ Ar_0 >= Ar_1 /\ Ar_0 + Ar_1 >= 1 /\ Ar_0 >= Ar_1 - 2*Ar_0 + 1 /\ -Ar_0 + Ar_1 + 1 >= 1 ] (Comp: ?, Cost: 1) l1(Ar_0, Ar_1) -> Com_1(l1(Ar_0, Ar_1 - 2*Ar_0 + 1)) [ Ar_0 >= Ar_1 /\ Ar_0 + Ar_1 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(l0(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Testing for reachability in the complexity graph removes the following transition from problem 4: l1(Ar_0, Ar_1) -> Com_1(l1(Ar_0, Ar_1 - 2*Ar_0 + 1)) [ Ar_0 >= Ar_1 /\ Ar_0 + Ar_1 >= 1 ] We thus obtain the following problem: 5: T: (Comp: 1, Cost: 3) l0(Ar_0, Ar_1) -> Com_1(l1(Ar_0, Ar_1 - 4*Ar_0 + 2)) [ Ar_0 >= Ar_1 /\ Ar_0 + Ar_1 >= 1 /\ Ar_0 >= Ar_1 - 2*Ar_0 + 1 /\ -Ar_0 + Ar_1 + 1 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(l0(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 3 Time: 0.149 sec (SMT: 0.138 sec) ---------------------------------------- (2) BOUNDS(1, 1)