/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(2, 3 + Arg_0)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 2839 ms] (2) BOUNDS(1, max(2, 3 + Arg_0)) (3) Loat Proof [FINISHED, 425 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: l0(A, B, F, X) -> Com_1(l1(A, B, F, X)) :|: TRUE l1(A, B, F, X) -> Com_1(l1(A, B, F + X, X - 1)) :|: X >= 1 l1(A, B, F, X) -> Com_1(l2(A, B, F, X)) :|: X < 1 l2(A, B, F, X) -> Com_1(l3(F, F, F, X)) :|: F >= 1 l3(A, B, F, X) -> Com_1(l3(A + B, B - 1, F, X)) :|: A >= 1 l3(A, B, F, X) -> Com_1(l2(A, B, F - 1, X)) :|: 0 >= A The start-symbols are:[l0_4] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([2, 3+Arg_0]) {O(n)}) Initial Complexity Problem: Start: l0 Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3 Temp_Vars: Locations: l0, l1, l2, l3 Transitions: 0: l0->l1 1: l1->l1 2: l1->l2 4: l3->l3 Timebounds: Overall timebound: max([2, 3+Arg_0]) {O(n)} 0: l0->l1: 1 {O(1)} 1: l1->l1: max([0, 1+Arg_0]) {O(n)} 2: l1->l2: 1 {O(1)} 4: l3->l3: 0 {O(1)} Costbounds: Overall costbound: max([2, 3+Arg_0]) {O(n)} 0: l0->l1: 1 {O(1)} 1: l1->l1: max([0, 1+Arg_0]) {O(n)} 2: l1->l2: 1 {O(1)} 4: l3->l3: 0 {O(1)} Sizebounds: `Lower: 0: l0->l1, Arg_0: Arg_0 {O(n)} 0: l0->l1, Arg_1: Arg_1 {O(n)} 0: l0->l1, Arg_2: Arg_2 {O(n)} 0: l0->l1, Arg_3: Arg_3 {O(n)} 1: l1->l1, Arg_0: 0 {O(1)} 1: l1->l1, Arg_1: Arg_1 {O(n)} 1: l1->l1, Arg_2: Arg_2 {O(n)} 1: l1->l1, Arg_3: Arg_3 {O(n)} 2: l1->l2, Arg_0: min([0, Arg_0]) {O(n)} 2: l1->l2, Arg_1: Arg_1 {O(n)} 2: l1->l2, Arg_2: Arg_2 {O(n)} 2: l1->l2, Arg_3: Arg_3 {O(n)} 4: l3->l3, Arg_0: inf {Infinity} 4: l3->l3, Arg_1: inf {Infinity} 4: l3->l3, Arg_2: inf {Infinity} 4: l3->l3, Arg_3: inf {Infinity} `Upper: 0: l0->l1, Arg_0: Arg_0 {O(n)} 0: l0->l1, Arg_1: Arg_1 {O(n)} 0: l0->l1, Arg_2: Arg_2 {O(n)} 0: l0->l1, Arg_3: Arg_3 {O(n)} 1: l1->l1, Arg_0: Arg_0 {O(n)} 1: l1->l1, Arg_1: max([Arg_0, max([Arg_0, Arg_1])])+max([0, Arg_0*(1+Arg_0)]) {O(n^2)} 1: l1->l1, Arg_2: Arg_2 {O(n)} 1: l1->l1, Arg_3: Arg_3 {O(n)} 2: l1->l2, Arg_0: 0 {O(1)} 2: l1->l2, Arg_1: max([Arg_1, max([Arg_0, max([Arg_0, Arg_1])])+max([0, Arg_0*(1+Arg_0)])]) {O(n^2)} 2: l1->l2, Arg_2: Arg_2 {O(n)} 2: l1->l2, Arg_3: Arg_3 {O(n)} 4: l3->l3, Arg_0: -(inf) {Infinity} 4: l3->l3, Arg_1: -(inf) {Infinity} 4: l3->l3, Arg_2: -(inf) {Infinity} 4: l3->l3, Arg_3: -(inf) {Infinity} ---------------------------------------- (2) BOUNDS(1, max(2, 3 + Arg_0)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l0 0: l0 -> l1 : [], cost: 1 1: l1 -> l1 : A'=-1+A, B'=A+B, [ A>=1 ], cost: 1 2: l1 -> l2 : [ 0>=A ], cost: 1 3: l2 -> l3 : C'=B, D'=B, [ B>=1 ], cost: 1 4: l3 -> l3 : C'=C+D, D'=-1+D, [ C>=1 ], cost: 1 5: l3 -> l2 : B'=-1+B, [ 0>=C ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: l0 -> l1 : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: l1 -> l1 : A'=-1+A, B'=A+B, [ A>=1 ], cost: 1 Accelerated rule 1 with metering function A, yielding the new rule 6. Removing the simple loops: 1. Accelerating simple loops of location 3. Accelerating the following rules: 4: l3 -> l3 : C'=C+D, D'=-1+D, [ C>=1 ], cost: 1 Found no metering function for rule 4. Removing the simple loops:. Accelerated all simple loops using metering functions (where possible): Start location: l0 0: l0 -> l1 : [], cost: 1 2: l1 -> l2 : [ 0>=A ], cost: 1 6: l1 -> l1 : A'=0, B'=1/2*A+1/2*A^2+B, [ A>=1 ], cost: A 3: l2 -> l3 : C'=B, D'=B, [ B>=1 ], cost: 1 4: l3 -> l3 : C'=C+D, D'=-1+D, [ C>=1 ], cost: 1 5: l3 -> l2 : B'=-1+B, [ 0>=C ], cost: 1 Chained accelerated rules (with incoming rules): Start location: l0 0: l0 -> l1 : [], cost: 1 7: l0 -> l1 : A'=0, B'=1/2*A+1/2*A^2+B, [ A>=1 ], cost: 1+A 2: l1 -> l2 : [ 0>=A ], cost: 1 3: l2 -> l3 : C'=B, D'=B, [ B>=1 ], cost: 1 8: l2 -> l3 : C'=2*B, D'=-1+B, [ B>=1 ], cost: 2 5: l3 -> l2 : B'=-1+B, [ 0>=C ], cost: 1 Eliminated locations (on tree-shaped paths): Start location: l0 9: l0 -> l2 : [ 0>=A ], cost: 2 10: l0 -> l2 : A'=0, B'=1/2*A+1/2*A^2+B, [ A>=1 ], cost: 2+A Applied pruning (of leafs and parallel rules): Start location: l0 10: l0 -> l2 : A'=0, B'=1/2*A+1/2*A^2+B, [ A>=1 ], cost: 2+A ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l0 10: l0 -> l2 : A'=0, B'=1/2*A+1/2*A^2+B, [ A>=1 ], cost: 2+A Computing asymptotic complexity for rule 10 Solved the limit problem by the following transformations: Created initial limit problem: A (+/+!), 2+A (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n} resulting limit problem: [solved] Solution: A / n Resulting cost 2+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 2+n Rule cost: 2+A Rule guard: [ A>=1 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)