/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, max(1, 2 + Arg_0 + Arg_1)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 143 ms] (2) BOUNDS(1, max(1, 2 + Arg_0 + Arg_1)) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: l0(A, B, C) -> Com_1(l1(A, B, C)) :|: TRUE l1(A, B, C) -> Com_1(l1(A + B + C, -(C) - 1, C)) :|: A >= 0 && A + B >= 0 The start-symbols are:[l0_3] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([1, 2+Arg_0+Arg_1]) {O(n)}) Initial Complexity Problem: Start: l0 Program_Vars: Arg_0, Arg_1, Arg_2 Temp_Vars: Locations: l0, l1 Transitions: 0: l0->l1 1: l1->l1 Timebounds: Overall timebound: max([1, 2+Arg_0+Arg_1]) {O(n)} 0: l0->l1: 1 {O(1)} 1: l1->l1: max([0, 1+Arg_0+Arg_1]) {O(n)} Costbounds: Overall costbound: max([1, 2+Arg_0+Arg_1]) {O(n)} 0: l0->l1: 1 {O(1)} 1: l1->l1: max([0, 1+Arg_0+Arg_1]) {O(n)} Sizebounds: `Lower: 0: l0->l1, Arg_0: Arg_0 {O(n)} 0: l0->l1, Arg_1: Arg_1 {O(n)} 0: l0->l1, Arg_2: Arg_2 {O(n)} 1: l1->l1, Arg_0: Arg_2 {O(n)} 1: l1->l1, Arg_1: -1-Arg_2 {O(n)} 1: l1->l1, Arg_2: Arg_2 {O(n)} `Upper: 0: l0->l1, Arg_0: Arg_0 {O(n)} 0: l0->l1, Arg_1: Arg_1 {O(n)} 0: l0->l1, Arg_2: Arg_2 {O(n)} 1: l1->l1, Arg_0: max([Arg_2, max([Arg_1, max([Arg_0, max([Arg_2, -1-Arg_2])])])])+max([0, (1+Arg_0+Arg_1)*(max([0, max([Arg_1, -1-Arg_2])])+max([0, Arg_2]))]) {O(n^2)} 1: l1->l1, Arg_1: -1-Arg_2 {O(n)} 1: l1->l1, Arg_2: Arg_2 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(1, 2 + Arg_0 + Arg_1))