/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(2 + 8 * Arg_0 + -8 * Arg_1, 10, -6 + -8 * Arg_1 + 8 * Arg_2)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 125 ms] (2) BOUNDS(1, max(2 + 8 * Arg_0 + -8 * Arg_1, 10, -6 + -8 * Arg_1 + 8 * Arg_2)) (3) Loat Proof [FINISHED, 227 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: l0(A, B, C) -> Com_1(l1(A, B, C)) :|: TRUE l1(A, B, C) -> Com_1(l1(A + 1, C, C)) :|: A + 1 <= B The start-symbols are:[l0_3] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, 2+8*max([1, max([-1+Arg_2-Arg_1, Arg_0-Arg_1])]) {O(n)}) Initial Complexity Problem: Start: l0 Program_Vars: Arg_0, Arg_1, Arg_2 Temp_Vars: Locations: l0, l1 Transitions: 0: l0->l1 1: l1->l1 Timebounds: Overall timebound: 2+8*max([1, max([-1+Arg_2-Arg_1, Arg_0-Arg_1])]) {O(n)} 0: l0->l1: 1 {O(1)} 1: l1->l1: 1+8*max([1, max([-1+Arg_2-Arg_1, Arg_0-Arg_1])]) {O(n)} Costbounds: Overall costbound: 2+8*max([1, max([-1+Arg_2-Arg_1, Arg_0-Arg_1])]) {O(n)} 0: l0->l1: 1 {O(1)} 1: l1->l1: 1+8*max([1, max([-1+Arg_2-Arg_1, Arg_0-Arg_1])]) {O(n)} Sizebounds: `Lower: 0: l0->l1, Arg_0: Arg_0 {O(n)} 0: l0->l1, Arg_1: Arg_1 {O(n)} 0: l0->l1, Arg_2: Arg_2 {O(n)} 1: l1->l1, Arg_0: Arg_2 {O(n)} 1: l1->l1, Arg_1: Arg_1 {O(n)} 1: l1->l1, Arg_2: Arg_2 {O(n)} `Upper: 0: l0->l1, Arg_0: Arg_0 {O(n)} 0: l0->l1, Arg_1: Arg_1 {O(n)} 0: l0->l1, Arg_2: Arg_2 {O(n)} 1: l1->l1, Arg_0: Arg_2 {O(n)} 1: l1->l1, Arg_1: 1+Arg_1+8*max([1, max([-1+Arg_2-Arg_1, Arg_0-Arg_1])]) {O(n)} 1: l1->l1, Arg_2: Arg_2 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(2 + 8 * Arg_0 + -8 * Arg_1, 10, -6 + -8 * Arg_1 + 8 * Arg_2)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l0 0: l0 -> l1 : [], cost: 1 1: l1 -> l1 : A'=C, B'=1+B, [ A>=1+B ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: l0 -> l1 : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: l1 -> l1 : A'=C, B'=1+B, [ A>=1+B ], cost: 1 Accelerated rule 1 with metering function -1+C-B (after strengthening guard), yielding the new rule 2. Removing the simple loops:. Accelerated all simple loops using metering functions (where possible): Start location: l0 0: l0 -> l1 : [], cost: 1 1: l1 -> l1 : A'=C, B'=1+B, [ A>=1+B ], cost: 1 2: l1 -> l1 : A'=C, B'=-1+C, [ A>=1+B && C>=2+B ], cost: -1+C-B Chained accelerated rules (with incoming rules): Start location: l0 0: l0 -> l1 : [], cost: 1 3: l0 -> l1 : A'=C, B'=1+B, [ A>=1+B ], cost: 2 4: l0 -> l1 : A'=C, B'=-1+C, [ A>=1+B && C>=2+B ], cost: C-B Removed unreachable locations (and leaf rules with constant cost): Start location: l0 4: l0 -> l1 : A'=C, B'=-1+C, [ A>=1+B && C>=2+B ], cost: C-B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l0 4: l0 -> l1 : A'=C, B'=-1+C, [ A>=1+B && C>=2+B ], cost: C-B Computing asymptotic complexity for rule 4 Solved the limit problem by the following transformations: Created initial limit problem: C-B (+), A-B (+/+!), -1+C-B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {C==n,A==0,B==-1} resulting limit problem: [solved] Solution: C / n A / 0 B / -1 Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: C-B Rule guard: [ A>=1+B && C>=2+B ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)