/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, max(2 + 8 * Arg_0, 10, 2 + 8 * Arg_1)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 94 ms] (2) BOUNDS(1, max(2 + 8 * Arg_0, 10, 2 + 8 * Arg_1)) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: l0(A, B) -> Com_1(l1(A, B)) :|: TRUE l1(A, B) -> Com_1(l1(B, B - 1)) :|: A >= 1 The start-symbols are:[l0_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, 2+8*max([1, max([Arg_1, Arg_0])]) {O(n)}) Initial Complexity Problem: Start: l0 Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: l0, l1 Transitions: 0: l0->l1 1: l1->l1 Timebounds: Overall timebound: 2+8*max([1, max([Arg_1, Arg_0])]) {O(n)} 0: l0->l1: 1 {O(1)} 1: l1->l1: 1+8*max([1, max([Arg_1, Arg_0])]) {O(n)} Costbounds: Overall costbound: 2+8*max([1, max([Arg_1, Arg_0])]) {O(n)} 0: l0->l1: 1 {O(1)} 1: l1->l1: 1+8*max([1, max([Arg_1, Arg_0])]) {O(n)} Sizebounds: `Lower: 0: l0->l1, Arg_0: Arg_0 {O(n)} 0: l0->l1, Arg_1: Arg_1 {O(n)} 1: l1->l1, Arg_0: min([Arg_1, -(1+-(Arg_1)+8*max([1, max([Arg_1, Arg_0])]))]) {O(n)} 1: l1->l1, Arg_1: -1+Arg_1+-8*max([1, max([Arg_1, Arg_0])]) {O(n)} `Upper: 0: l0->l1, Arg_0: Arg_0 {O(n)} 0: l0->l1, Arg_1: Arg_1 {O(n)} 1: l1->l1, Arg_0: Arg_1 {O(n)} 1: l1->l1, Arg_1: Arg_1 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(2 + 8 * Arg_0, 10, 2 + 8 * Arg_1))