/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(INF, INF). (0) CpxIntTrs (1) Loat Proof [FINISHED, 110 ms] (2) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f2(A, B, C, D) -> Com_1(f2(1 + A, 1 + B, -(1) + C, D)) :|: TRUE f1(A, B, C, D) -> Com_1(f2(A, B, C, D)) :|: A >= C && B >= A && C >= B f1(A, B, C, D) -> Com_1(f300(A, B, C, E)) :|: C >= 1 + A && B >= A && C >= B f1(A, B, C, D) -> Com_1(f300(A, B, C, E)) :|: B >= A && B >= C + 1 f1(A, B, C, D) -> Com_1(f300(A, B, C, E)) :|: A >= B + 1 The start-symbols are:[f1_4] ---------------------------------------- (1) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f1 0: f2 -> f2 : A'=1+A, B'=1+B, C'=-1+C, [], cost: 1 1: f1 -> f2 : [ A>=C && B>=A && C>=B ], cost: 1 2: f1 -> f300 : D'=free, [ C>=1+A && B>=A && C>=B ], cost: 1 3: f1 -> f300 : D'=free_1, [ B>=A && B>=1+C ], cost: 1 4: f1 -> f300 : D'=free_2, [ A>=1+B ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 1: f1 -> f2 : [ A>=C && B>=A && C>=B ], cost: 1 Removed unreachable and leaf rules: Start location: f1 0: f2 -> f2 : A'=1+A, B'=1+B, C'=-1+C, [], cost: 1 1: f1 -> f2 : [ A>=C && B>=A && C>=B ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: f2 -> f2 : A'=1+A, B'=1+B, C'=-1+C, [], cost: 1 Accelerated rule 0 with NONTERM, yielding the new rule 5. Removing the simple loops: 0. Accelerated all simple loops using metering functions (where possible): Start location: f1 5: f2 -> [3] : [], cost: NONTERM 1: f1 -> f2 : [ A>=C && B>=A && C>=B ], cost: 1 Chained accelerated rules (with incoming rules): Start location: f1 1: f1 -> f2 : [ A>=C && B>=A && C>=B ], cost: 1 6: f1 -> [3] : [ A>=C && B>=A && C>=B ], cost: NONTERM Removed unreachable locations (and leaf rules with constant cost): Start location: f1 6: f1 -> [3] : [ A>=C && B>=A && C>=B ], cost: NONTERM ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f1 6: f1 -> [3] : [ A>=C && B>=A && C>=B ], cost: NONTERM Computing asymptotic complexity for rule 6 Guard is satisfiable, yielding nontermination Resulting cost NONTERM has complexity: Nonterm Found new complexity Nonterm. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Nonterm Cpx degree: Nonterm Solved cost: NONTERM Rule cost: NONTERM Rule guard: [ A>=C && B>=A && C>=B ] NO ---------------------------------------- (2) BOUNDS(INF, INF)