/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- MAYBE proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, INF). (0) CpxIntTrs (1) Loat Proof [FINISHED, 115 ms] (2) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f0(A, B, C, D) -> Com_1(f6(1, C, C, D)) :|: TRUE f6(A, B, C, D) -> Com_1(f6(A, E, C, E)) :|: B >= A + 2 && E * E >= C + 1 f6(A, B, C, D) -> Com_1(f6(E, B, C, E)) :|: B >= A + 2 && C >= E * E f6(A, B, C, D) -> Com_1(f16(A, B, C, D)) :|: A + 1 >= B The start-symbols are:[f0_4] ---------------------------------------- (1) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f0 0: f0 -> f6 : A'=1, B'=C, [], cost: 1 1: f6 -> f6 : B'=free, D'=free, [ B>=2+A && free^2>=1+C ], cost: 1 2: f6 -> f6 : A'=free_1, D'=free_1, [ B>=2+A && C>=free_1^2 ], cost: 1 3: f6 -> f16 : [ 1+A>=B ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: f0 -> f6 : A'=1, B'=C, [], cost: 1 Removed unreachable and leaf rules: Start location: f0 0: f0 -> f6 : A'=1, B'=C, [], cost: 1 1: f6 -> f6 : B'=free, D'=free, [ B>=2+A && free^2>=1+C ], cost: 1 2: f6 -> f6 : A'=free_1, D'=free_1, [ B>=2+A && C>=free_1^2 ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f6 -> f6 : B'=free, D'=free, [ B>=2+A && free^2>=1+C ], cost: 1 2: f6 -> f6 : A'=free_1, D'=free_1, [ B>=2+A && C>=free_1^2 ], cost: 1 Found no metering function for rule 1 (rule is too complicated). Found no metering function for rule 2 (rule is too complicated). Removing the simple loops:. Accelerated all simple loops using metering functions (where possible): Start location: f0 0: f0 -> f6 : A'=1, B'=C, [], cost: 1 1: f6 -> f6 : B'=free, D'=free, [ B>=2+A && free^2>=1+C ], cost: 1 2: f6 -> f6 : A'=free_1, D'=free_1, [ B>=2+A && C>=free_1^2 ], cost: 1 Chained accelerated rules (with incoming rules): Start location: f0 0: f0 -> f6 : A'=1, B'=C, [], cost: 1 4: f0 -> f6 : A'=1, B'=free, D'=free, [ C>=3 && free^2>=1+C ], cost: 2 5: f0 -> f6 : A'=free_1, B'=C, D'=free_1, [ C>=3 && C>=free_1^2 ], cost: 2 Removed unreachable locations (and leaf rules with constant cost): Start location: f0 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f0 Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?) ---------------------------------------- (2) BOUNDS(1, INF)