/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(INF, INF). (0) CpxIntTrs (1) Loat Proof [FINISHED, 104 ms] (2) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f4(A, B, C) -> Com_1(f5(A, B, C)) :|: A >= B + 1 f0(A, B, C) -> Com_1(f4(D, D + 1, B)) :|: TRUE f4(A, B, C) -> Com_1(f4(D, D + 1, B)) :|: TRUE The start-symbols are:[f0_3] ---------------------------------------- (1) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f0 0: f4 -> f5 : [ A>=1+B ], cost: 1 2: f4 -> f4 : A'=free_1, B'=1+free_1, C'=B, [], cost: 1 1: f0 -> f4 : A'=free, B'=1+free, C'=B, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 1: f0 -> f4 : A'=free, B'=1+free, C'=B, [], cost: 1 Removed unreachable and leaf rules: Start location: f0 2: f4 -> f4 : A'=free_1, B'=1+free_1, C'=B, [], cost: 1 1: f0 -> f4 : A'=free, B'=1+free, C'=B, [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 2: f4 -> f4 : A'=free_1, B'=1+free_1, C'=B, [], cost: 1 Accelerated rule 2 with NONTERM, yielding the new rule 3. Removing the simple loops: 2. Accelerated all simple loops using metering functions (where possible): Start location: f0 3: f4 -> [3] : [], cost: NONTERM 1: f0 -> f4 : A'=free, B'=1+free, C'=B, [], cost: 1 Chained accelerated rules (with incoming rules): Start location: f0 1: f0 -> f4 : A'=free, B'=1+free, C'=B, [], cost: 1 4: f0 -> [3] : A'=free, B'=1+free, C'=B, [], cost: NONTERM Removed unreachable locations (and leaf rules with constant cost): Start location: f0 4: f0 -> [3] : A'=free, B'=1+free, C'=B, [], cost: NONTERM ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f0 4: f0 -> [3] : A'=free, B'=1+free, C'=B, [], cost: NONTERM Computing asymptotic complexity for rule 4 Guard is satisfiable, yielding nontermination Resulting cost NONTERM has complexity: Nonterm Found new complexity Nonterm. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Nonterm Cpx degree: Nonterm Solved cost: NONTERM Rule cost: NONTERM Rule guard: [] NO ---------------------------------------- (2) BOUNDS(INF, INF)