/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, nat(-1 * Arg_2 + max(Arg_1 + nat(1 + Arg_0 + -1 * Arg_1), Arg_1)) + max(2, 3 + Arg_0 + -1 * Arg_1)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 2244 ms] (2) BOUNDS(1, nat(-1 * Arg_2 + max(Arg_1 + nat(1 + Arg_0 + -1 * Arg_1), Arg_1)) + max(2, 3 + Arg_0 + -1 * Arg_1)) (3) Loat Proof [FINISHED, 360 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f1(A, B, C) -> Com_1(f1(A, B + 1, C)) :|: A >= B + 1 f3(A, B, C) -> Com_1(f1(A, B, C)) :|: B >= C + 1 f1(A, B, C) -> Com_1(f1(A, B, C + 1)) :|: B >= C + 2 && B >= A The start-symbols are:[f3_3] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([0, -(Arg_2)+max([Arg_1, Arg_1+max([0, 1+Arg_0-Arg_1])])])+max([2, 3+Arg_0-Arg_1]) {O(n)}) Initial Complexity Problem: Start: f3 Program_Vars: Arg_0, Arg_1, Arg_2 Temp_Vars: Locations: f1, f3, n_f1___1 Transitions: 135: f1->f1 134: f1->n_f1___1 1: f3->f1 133: n_f1___1->n_f1___1 Timebounds: Overall timebound: max([0, -(Arg_2)+max([Arg_1, Arg_1+max([0, 1+Arg_0-Arg_1])])])+max([2, 3+Arg_0-Arg_1]) {O(n)} 134: f1->n_f1___1: 1 {O(1)} 135: f1->f1: max([0, 1+Arg_0-Arg_1]) {O(n)} 1: f3->f1: 1 {O(1)} 133: n_f1___1->n_f1___1: max([0, -(Arg_2)+max([Arg_1, Arg_1+max([0, 1+Arg_0-Arg_1])])]) {O(n)} Costbounds: Overall costbound: max([0, -(Arg_2)+max([Arg_1, Arg_1+max([0, 1+Arg_0-Arg_1])])])+max([2, 3+Arg_0-Arg_1]) {O(n)} 134: f1->n_f1___1: 1 {O(1)} 135: f1->f1: max([0, 1+Arg_0-Arg_1]) {O(n)} 1: f3->f1: 1 {O(1)} 133: n_f1___1->n_f1___1: max([0, -(Arg_2)+max([Arg_1, Arg_1+max([0, 1+Arg_0-Arg_1])])]) {O(n)} Sizebounds: `Lower: 134: f1->n_f1___1, Arg_0: Arg_0 {O(n)} 134: f1->n_f1___1, Arg_1: Arg_1 {O(n)} 134: f1->n_f1___1, Arg_2: 1+Arg_2 {O(n)} 135: f1->f1, Arg_0: Arg_0 {O(n)} 135: f1->f1, Arg_1: Arg_1 {O(n)} 135: f1->f1, Arg_2: Arg_2 {O(n)} 1: f3->f1, Arg_0: Arg_0 {O(n)} 1: f3->f1, Arg_1: Arg_1 {O(n)} 1: f3->f1, Arg_2: Arg_2 {O(n)} 133: n_f1___1->n_f1___1, Arg_0: Arg_0 {O(n)} 133: n_f1___1->n_f1___1, Arg_1: Arg_1 {O(n)} 133: n_f1___1->n_f1___1, Arg_2: 1+Arg_2 {O(n)} `Upper: 134: f1->n_f1___1, Arg_0: Arg_0 {O(n)} 134: f1->n_f1___1, Arg_1: max([Arg_1, Arg_1+max([0, 1+Arg_0-Arg_1])]) {O(n)} 134: f1->n_f1___1, Arg_2: 1+Arg_2 {O(n)} 135: f1->f1, Arg_0: Arg_0 {O(n)} 135: f1->f1, Arg_1: Arg_1+max([0, 1+Arg_0-Arg_1]) {O(n)} 135: f1->f1, Arg_2: Arg_2 {O(n)} 1: f3->f1, Arg_0: Arg_0 {O(n)} 1: f3->f1, Arg_1: Arg_1 {O(n)} 1: f3->f1, Arg_2: Arg_2 {O(n)} 133: n_f1___1->n_f1___1, Arg_0: Arg_0 {O(n)} 133: n_f1___1->n_f1___1, Arg_1: max([Arg_1, Arg_1+max([0, 1+Arg_0-Arg_1])]) {O(n)} 133: n_f1___1->n_f1___1, Arg_2: 1+Arg_2+max([0, -(Arg_2)+max([Arg_1, Arg_1+max([0, 1+Arg_0-Arg_1])])]) {O(n)} ---------------------------------------- (2) BOUNDS(1, nat(-1 * Arg_2 + max(Arg_1 + nat(1 + Arg_0 + -1 * Arg_1), Arg_1)) + max(2, 3 + Arg_0 + -1 * Arg_1)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f3 0: f1 -> f1 : B'=1+B, [ A>=1+B ], cost: 1 2: f1 -> f1 : C'=1+C, [ B>=2+C && B>=A ], cost: 1 1: f3 -> f1 : [ B>=1+C ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 1: f3 -> f1 : [ B>=1+C ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: f1 -> f1 : B'=1+B, [ A>=1+B ], cost: 1 2: f1 -> f1 : C'=1+C, [ B>=2+C && B>=A ], cost: 1 Accelerated rule 0 with metering function A-B, yielding the new rule 3. Accelerated rule 2 with metering function -1-C+B, yielding the new rule 4. Removing the simple loops: 0 2. Accelerated all simple loops using metering functions (where possible): Start location: f3 3: f1 -> f1 : B'=A, [ A>=1+B ], cost: A-B 4: f1 -> f1 : C'=-1+B, [ B>=2+C && B>=A ], cost: -1-C+B 1: f3 -> f1 : [ B>=1+C ], cost: 1 Chained accelerated rules (with incoming rules): Start location: f3 1: f3 -> f1 : [ B>=1+C ], cost: 1 5: f3 -> f1 : B'=A, [ B>=1+C && A>=1+B ], cost: 1+A-B 6: f3 -> f1 : C'=-1+B, [ B>=2+C && B>=A ], cost: -C+B Removed unreachable locations (and leaf rules with constant cost): Start location: f3 5: f3 -> f1 : B'=A, [ B>=1+C && A>=1+B ], cost: 1+A-B 6: f3 -> f1 : C'=-1+B, [ B>=2+C && B>=A ], cost: -C+B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f3 5: f3 -> f1 : B'=A, [ B>=1+C && A>=1+B ], cost: 1+A-B 6: f3 -> f1 : C'=-1+B, [ B>=2+C && B>=A ], cost: -C+B Computing asymptotic complexity for rule 5 Solved the limit problem by the following transformations: Created initial limit problem: -C+B (+/+!), A-B (+/+!), 1+A-B (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {C==0,A==n,B==1} resulting limit problem: [solved] Solution: C / 0 A / n B / 1 Resulting cost n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: n Rule cost: 1+A-B Rule guard: [ B>=1+C && A>=1+B ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)