/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, nat(1 + Arg_1) + max(1, 2 + Arg_0)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 147 ms] (2) BOUNDS(1, nat(1 + Arg_1) + max(1, 2 + Arg_0)) (3) Loat Proof [FINISHED, 433 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f1(A, B) -> Com_1(f2(A, B)) :|: A >= 1 && B >= 1 f2(A, B) -> Com_1(f2(A - 1, B)) :|: A >= 2 && B >= 1 f2(A, B) -> Com_1(f2(A, B - 1)) :|: A >= 1 && B >= 2 The start-symbols are:[f1_2] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([0, 1+Arg_1])+max([1, 2+Arg_0]) {O(n)}) Initial Complexity Problem: Start: f1 Program_Vars: Arg_0, Arg_1 Temp_Vars: Locations: f1, f2 Transitions: 0: f1->f2 1: f2->f2 2: f2->f2 Timebounds: Overall timebound: max([0, 1+Arg_1])+max([1, 2+Arg_0]) {O(n)} 0: f1->f2: 1 {O(1)} 1: f2->f2: max([0, 1+Arg_0]) {O(n)} 2: f2->f2: max([0, 1+Arg_1]) {O(n)} Costbounds: Overall costbound: max([0, 1+Arg_1])+max([1, 2+Arg_0]) {O(n)} 0: f1->f2: 1 {O(1)} 1: f2->f2: max([0, 1+Arg_0]) {O(n)} 2: f2->f2: max([0, 1+Arg_1]) {O(n)} Sizebounds: `Lower: 0: f1->f2, Arg_0: 1 {O(1)} 0: f1->f2, Arg_1: 1 {O(1)} 1: f2->f2, Arg_0: 1 {O(1)} 1: f2->f2, Arg_1: 1 {O(1)} 2: f2->f2, Arg_0: 1 {O(1)} 2: f2->f2, Arg_1: 1 {O(1)} `Upper: 0: f1->f2, Arg_0: Arg_0 {O(n)} 0: f1->f2, Arg_1: Arg_1 {O(n)} 1: f2->f2, Arg_0: Arg_0 {O(n)} 1: f2->f2, Arg_1: Arg_1 {O(n)} 2: f2->f2, Arg_0: Arg_0 {O(n)} 2: f2->f2, Arg_1: Arg_1 {O(n)} ---------------------------------------- (2) BOUNDS(1, nat(1 + Arg_1) + max(1, 2 + Arg_0)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f1 0: f1 -> f2 : [ A>=1 && B>=1 ], cost: 1 1: f2 -> f2 : A'=-1+A, [ A>=2 && B>=1 ], cost: 1 2: f2 -> f2 : B'=-1+B, [ A>=1 && B>=2 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: f1 -> f2 : [ A>=1 && B>=1 ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f2 -> f2 : A'=-1+A, [ A>=2 && B>=1 ], cost: 1 2: f2 -> f2 : B'=-1+B, [ A>=1 && B>=2 ], cost: 1 Accelerated rule 1 with metering function -1+A, yielding the new rule 3. Accelerated rule 2 with metering function -1+B, yielding the new rule 4. Removing the simple loops: 1 2. Accelerated all simple loops using metering functions (where possible): Start location: f1 0: f1 -> f2 : [ A>=1 && B>=1 ], cost: 1 3: f2 -> f2 : A'=1, [ A>=2 && B>=1 ], cost: -1+A 4: f2 -> f2 : B'=1, [ A>=1 && B>=2 ], cost: -1+B Chained accelerated rules (with incoming rules): Start location: f1 0: f1 -> f2 : [ A>=1 && B>=1 ], cost: 1 5: f1 -> f2 : A'=1, [ B>=1 && A>=2 ], cost: A 6: f1 -> f2 : B'=1, [ A>=1 && B>=2 ], cost: B Removed unreachable locations (and leaf rules with constant cost): Start location: f1 5: f1 -> f2 : A'=1, [ B>=1 && A>=2 ], cost: A 6: f1 -> f2 : B'=1, [ A>=1 && B>=2 ], cost: B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f1 5: f1 -> f2 : A'=1, [ B>=1 && A>=2 ], cost: A 6: f1 -> f2 : B'=1, [ A>=1 && B>=2 ], cost: B Computing asymptotic complexity for rule 5 Solved the limit problem by the following transformations: Created initial limit problem: -1+A (+/+!), A (+), B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n,B==n} resulting limit problem: [solved] Solution: A / n B / n Resulting cost n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: n Rule cost: A Rule guard: [ B>=1 && A>=2 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)