/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 36 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 526 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f0(A, B, C) -> Com_1(f3(-(A), B, C)) :|: TRUE f3(A, B, C) -> Com_1(f7(0, D, C)) :|: A >= 0 && A <= 0 f4(A, B, C) -> Com_1(f7(0, D, C)) :|: A >= 0 && A <= 0 f6(A, B, C) -> Com_1(f4(A, B, 1)) :|: A >= 1 f3(A, B, C) -> Com_1(f4(-(1) - A, B, 1)) :|: 0 >= A + 1 && 0 >= C f3(A, B, C) -> Com_1(f4(-(1) - A, B, 1)) :|: 0 >= A + 1 && C >= 2 f3(A, B, C) -> Com_1(f4(-(1) - A, B, 1)) :|: A >= 1 && 0 >= C f3(A, B, C) -> Com_1(f4(-(1) - A, B, 1)) :|: A >= 1 && C >= 2 f4(A, B, C) -> Com_1(f3(1 - A, B, 0)) :|: 0 >= A + 1 && C >= 1 && C <= 1 f4(A, B, C) -> Com_1(f3(1 - A, B, 0)) :|: A >= 1 && C >= 1 && C <= 1 f5(A, B, C) -> Com_1(f3(1 - A, B, 0)) :|: 0 >= A + 1 && C >= 1 && C <= 1 f5(A, B, C) -> Com_1(f3(1 - A, B, 0)) :|: A >= 1 && C >= 1 && C <= 1 The start-symbols are:[f6_3] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 2*Ar_0 + 3) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f3(-Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) f3(Ar_0, Ar_1, Ar_2) -> Com_1(f7(0, Fresh_1, Ar_2)) [ Ar_0 = 0 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f7(0, Fresh_0, Ar_2)) [ Ar_0 = 0 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1, 1)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1, Ar_2) -> Com_1(f4(-Ar_0 - 1, Ar_1, 1)) [ 0 >= Ar_0 + 1 /\ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1, Ar_2) -> Com_1(f4(-Ar_0 - 1, Ar_1, 1)) [ 0 >= Ar_0 + 1 /\ Ar_2 >= 2 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1, Ar_2) -> Com_1(f4(-Ar_0 - 1, Ar_1, 1)) [ Ar_0 >= 1 /\ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1, Ar_2) -> Com_1(f4(-Ar_0 - 1, Ar_1, 1)) [ Ar_0 >= 1 /\ Ar_2 >= 2 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f3(-Ar_0 + 1, Ar_1, 0)) [ 0 >= Ar_0 + 1 /\ Ar_2 = 1 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f3(-Ar_0 + 1, Ar_1, 0)) [ Ar_0 >= 1 /\ Ar_2 = 1 ] (Comp: ?, Cost: 1) f5(Ar_0, Ar_1, Ar_2) -> Com_1(f3(-Ar_0 + 1, Ar_1, 0)) [ 0 >= Ar_0 + 1 /\ Ar_2 = 1 ] (Comp: ?, Cost: 1) f5(Ar_0, Ar_1, Ar_2) -> Com_1(f3(-Ar_0 + 1, Ar_1, 0)) [ Ar_0 >= 1 /\ Ar_2 = 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Testing for reachability in the complexity graph removes the following transitions from problem 1: f0(Ar_0, Ar_1, Ar_2) -> Com_1(f3(-Ar_0, Ar_1, Ar_2)) f3(Ar_0, Ar_1, Ar_2) -> Com_1(f4(-Ar_0 - 1, Ar_1, 1)) [ 0 >= Ar_0 + 1 /\ Ar_2 >= 2 ] f3(Ar_0, Ar_1, Ar_2) -> Com_1(f4(-Ar_0 - 1, Ar_1, 1)) [ Ar_0 >= 1 /\ 0 >= Ar_2 ] f3(Ar_0, Ar_1, Ar_2) -> Com_1(f4(-Ar_0 - 1, Ar_1, 1)) [ Ar_0 >= 1 /\ Ar_2 >= 2 ] f4(Ar_0, Ar_1, Ar_2) -> Com_1(f3(-Ar_0 + 1, Ar_1, 0)) [ 0 >= Ar_0 + 1 /\ Ar_2 = 1 ] f5(Ar_0, Ar_1, Ar_2) -> Com_1(f3(-Ar_0 + 1, Ar_1, 0)) [ 0 >= Ar_0 + 1 /\ Ar_2 = 1 ] f5(Ar_0, Ar_1, Ar_2) -> Com_1(f3(-Ar_0 + 1, Ar_1, 0)) [ Ar_0 >= 1 /\ Ar_2 = 1 ] We thus obtain the following problem: 2: T: (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f7(0, Fresh_0, Ar_2)) [ Ar_0 = 0 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1, Ar_2) -> Com_1(f4(-Ar_0 - 1, Ar_1, 1)) [ 0 >= Ar_0 + 1 /\ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1, Ar_2) -> Com_1(f7(0, Fresh_1, Ar_2)) [ Ar_0 = 0 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f3(-Ar_0 + 1, Ar_1, 0)) [ Ar_0 >= 1 /\ Ar_2 = 1 ] (Comp: ?, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1, 1)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f7(0, Fresh_0, Ar_2)) [ Ar_0 = 0 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1, Ar_2) -> Com_1(f4(-Ar_0 - 1, Ar_1, 1)) [ 0 >= Ar_0 + 1 /\ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1, Ar_2) -> Com_1(f7(0, Fresh_1, Ar_2)) [ Ar_0 = 0 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f3(-Ar_0 + 1, Ar_1, 0)) [ Ar_0 >= 1 /\ Ar_2 = 1 ] (Comp: 1, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1, 1)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f4) = 1 Pol(f7) = 0 Pol(f3) = 1 Pol(f6) = 1 Pol(koat_start) = 1 orients all transitions weakly and the transitions f4(Ar_0, Ar_1, Ar_2) -> Com_1(f7(0, Fresh_0, Ar_2)) [ Ar_0 = 0 ] f3(Ar_0, Ar_1, Ar_2) -> Com_1(f7(0, Fresh_1, Ar_2)) [ Ar_0 = 0 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f7(0, Fresh_0, Ar_2)) [ Ar_0 = 0 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1, Ar_2) -> Com_1(f4(-Ar_0 - 1, Ar_1, 1)) [ 0 >= Ar_0 + 1 /\ 0 >= Ar_2 ] (Comp: 1, Cost: 1) f3(Ar_0, Ar_1, Ar_2) -> Com_1(f7(0, Fresh_1, Ar_2)) [ Ar_0 = 0 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f3(-Ar_0 + 1, Ar_1, 0)) [ Ar_0 >= 1 /\ Ar_2 = 1 ] (Comp: 1, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1, 1)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f4) = V_1 Pol(f7) = 0 Pol(f3) = -V_1 Pol(f6) = V_1 Pol(koat_start) = V_1 orients all transitions weakly and the transitions f4(Ar_0, Ar_1, Ar_2) -> Com_1(f3(-Ar_0 + 1, Ar_1, 0)) [ Ar_0 >= 1 /\ Ar_2 = 1 ] f3(Ar_0, Ar_1, Ar_2) -> Com_1(f4(-Ar_0 - 1, Ar_1, 1)) [ 0 >= Ar_0 + 1 /\ 0 >= Ar_2 ] strictly and produces the following problem: 5: T: (Comp: 1, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f7(0, Fresh_0, Ar_2)) [ Ar_0 = 0 ] (Comp: Ar_0, Cost: 1) f3(Ar_0, Ar_1, Ar_2) -> Com_1(f4(-Ar_0 - 1, Ar_1, 1)) [ 0 >= Ar_0 + 1 /\ 0 >= Ar_2 ] (Comp: 1, Cost: 1) f3(Ar_0, Ar_1, Ar_2) -> Com_1(f7(0, Fresh_1, Ar_2)) [ Ar_0 = 0 ] (Comp: Ar_0, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f3(-Ar_0 + 1, Ar_1, 0)) [ Ar_0 >= 1 /\ Ar_2 = 1 ] (Comp: 1, Cost: 1) f6(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1, 1)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 2*Ar_0 + 3 Time: 0.081 sec (SMT: 0.068 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f6 0: f0 -> f3 : A'=-A, [], cost: 1 1: f3 -> f7 : A'=0, B'=free, [ A==0 ], cost: 1 4: f3 -> f4 : A'=-1-A, C'=1, [ 0>=1+A && 0>=C ], cost: 1 5: f3 -> f4 : A'=-1-A, C'=1, [ 0>=1+A && C>=2 ], cost: 1 6: f3 -> f4 : A'=-1-A, C'=1, [ A>=1 && 0>=C ], cost: 1 7: f3 -> f4 : A'=-1-A, C'=1, [ A>=1 && C>=2 ], cost: 1 2: f4 -> f7 : A'=0, B'=free_1, [ A==0 ], cost: 1 8: f4 -> f3 : A'=1-A, C'=0, [ 0>=1+A && C==1 ], cost: 1 9: f4 -> f3 : A'=1-A, C'=0, [ A>=1 && C==1 ], cost: 1 3: f6 -> f4 : C'=1, [ A>=1 ], cost: 1 10: f5 -> f3 : A'=1-A, C'=0, [ 0>=1+A && C==1 ], cost: 1 11: f5 -> f3 : A'=1-A, C'=0, [ A>=1 && C==1 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 3: f6 -> f4 : C'=1, [ A>=1 ], cost: 1 Removed unreachable and leaf rules: Start location: f6 4: f3 -> f4 : A'=-1-A, C'=1, [ 0>=1+A && 0>=C ], cost: 1 5: f3 -> f4 : A'=-1-A, C'=1, [ 0>=1+A && C>=2 ], cost: 1 6: f3 -> f4 : A'=-1-A, C'=1, [ A>=1 && 0>=C ], cost: 1 7: f3 -> f4 : A'=-1-A, C'=1, [ A>=1 && C>=2 ], cost: 1 8: f4 -> f3 : A'=1-A, C'=0, [ 0>=1+A && C==1 ], cost: 1 9: f4 -> f3 : A'=1-A, C'=0, [ A>=1 && C==1 ], cost: 1 3: f6 -> f4 : C'=1, [ A>=1 ], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on tree-shaped paths): Start location: f6 12: f4 -> f4 : A'=-2+A, C'=1, [ 0>=1+A && C==1 ], cost: 2 13: f4 -> f4 : A'=-2+A, C'=1, [ C==1 && 0>=2-A ], cost: 2 3: f6 -> f4 : C'=1, [ A>=1 ], cost: 1 Accelerating simple loops of location 2. Accelerating the following rules: 12: f4 -> f4 : A'=-2+A, C'=1, [ 0>=1+A && C==1 ], cost: 2 13: f4 -> f4 : A'=-2+A, C'=1, [ C==1 && 0>=2-A ], cost: 2 Accelerated rule 12 with NONTERM, yielding the new rule 14. Accelerated rule 13 with metering function meter (where 2*meter==-1+A), yielding the new rule 15. Removing the simple loops: 12 13. Accelerated all simple loops using metering functions (where possible): Start location: f6 14: f4 -> [6] : [ 0>=1+A && C==1 ], cost: NONTERM 15: f4 -> f4 : A'=A-2*meter, C'=1, [ C==1 && 0>=2-A && 2*meter==-1+A && meter>=1 ], cost: 2*meter 3: f6 -> f4 : C'=1, [ A>=1 ], cost: 1 Chained accelerated rules (with incoming rules): Start location: f6 3: f6 -> f4 : C'=1, [ A>=1 ], cost: 1 16: f6 -> f4 : A'=A-2*meter, C'=1, [ 0>=2-A && 2*meter==-1+A && meter>=1 ], cost: 1+2*meter Removed unreachable locations (and leaf rules with constant cost): Start location: f6 16: f6 -> f4 : A'=A-2*meter, C'=1, [ 0>=2-A && 2*meter==-1+A && meter>=1 ], cost: 1+2*meter ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f6 16: f6 -> f4 : A'=A-2*meter, C'=1, [ 0>=2-A && 2*meter==-1+A && meter>=1 ], cost: 1+2*meter Computing asymptotic complexity for rule 16 Solved the limit problem by the following transformations: Created initial limit problem: 2-A+2*meter (+/+!), 1+2*meter (+), -1+A (+/+!), A-2*meter (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==1+2*n,meter==n} resulting limit problem: [solved] Solution: A / 1+2*n meter / n Resulting cost 1+2*n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+2*n Rule cost: 1+2*meter Rule guard: [ 0>=2-A && 2*meter==-1+A ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)