/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, nat(2 + 2 * Arg_0 + -2 * Arg_1) + max(2, 3 + Arg_0 + -1 * Arg_1)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 634 ms] (2) BOUNDS(1, nat(2 + 2 * Arg_0 + -2 * Arg_1) + max(2, 3 + Arg_0 + -1 * Arg_1)) (3) Loat Proof [FINISHED, 678 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f2(A, B, C, D) -> Com_1(f300(A, B, C, D)) :|: TRUE f300(A, B, C, D) -> Com_1(f300(1 + A, B, E, D)) :|: E >= 1 && B >= 1 + A f300(A, B, C, D) -> Com_1(f300(1 + A, B, E, D)) :|: 0 >= E + 1 && B >= 1 + A f300(A, B, C, D) -> Com_1(f300(A, -(1) + B, 0, D)) :|: B >= 1 + A f300(A, B, C, D) -> Com_1(f1(A, B, C, E)) :|: A >= B The start-symbols are:[f2_4] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([0, 1+Arg_0-Arg_1])+max([2, 3+Arg_0-Arg_1])+max([0, 1+Arg_0-Arg_1]) {O(n)}) Initial Complexity Problem: Start: f2 Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3 Temp_Vars: E Locations: f1, f2, f300 Transitions: 0: f2->f300 4: f300->f1 1: f300->f300 2: f300->f300 3: f300->f300 Timebounds: Overall timebound: max([0, 1+Arg_0-Arg_1])+max([2, 3+Arg_0-Arg_1])+max([0, 1+Arg_0-Arg_1]) {O(n)} 0: f2->f300: 1 {O(1)} 1: f300->f300: max([0, 1+Arg_0-Arg_1]) {O(n)} 2: f300->f300: max([0, 1+Arg_0-Arg_1]) {O(n)} 3: f300->f300: max([0, 1+Arg_0-Arg_1]) {O(n)} 4: f300->f1: 1 {O(1)} Costbounds: Overall costbound: max([0, 1+Arg_0-Arg_1])+max([2, 3+Arg_0-Arg_1])+max([0, 1+Arg_0-Arg_1]) {O(n)} 0: f2->f300: 1 {O(1)} 1: f300->f300: max([0, 1+Arg_0-Arg_1]) {O(n)} 2: f300->f300: max([0, 1+Arg_0-Arg_1]) {O(n)} 3: f300->f300: max([0, 1+Arg_0-Arg_1]) {O(n)} 4: f300->f1: 1 {O(1)} Sizebounds: `Lower: 0: f2->f300, Arg_0: Arg_0 {O(n)} 0: f2->f300, Arg_1: Arg_1 {O(n)} 0: f2->f300, Arg_2: Arg_2 {O(n)} 0: f2->f300, Arg_3: Arg_3 {O(n)} 1: f300->f300, Arg_0: Arg_0-max([0, 1+Arg_0-Arg_1]) {O(n)} 1: f300->f300, Arg_1: Arg_1 {O(n)} 1: f300->f300, Arg_2: 1 {O(1)} 1: f300->f300, Arg_3: Arg_3 {O(n)} 2: f300->f300, Arg_0: Arg_0-max([0, 1+Arg_0-Arg_1]) {O(n)} 2: f300->f300, Arg_1: Arg_1 {O(n)} 2: f300->f300, Arg_3: Arg_3 {O(n)} 3: f300->f300, Arg_0: Arg_0-max([0, 1+Arg_0-Arg_1]) {O(n)} 3: f300->f300, Arg_1: Arg_1 {O(n)} 3: f300->f300, Arg_2: 0 {O(1)} 3: f300->f300, Arg_3: Arg_3 {O(n)} 4: f300->f1, Arg_0: min([Arg_0, -(-(Arg_0)+max([0, 1+Arg_0-Arg_1]))]) {O(n)} 4: f300->f1, Arg_1: Arg_1 {O(n)} `Upper: 0: f2->f300, Arg_0: Arg_0 {O(n)} 0: f2->f300, Arg_1: Arg_1 {O(n)} 0: f2->f300, Arg_2: Arg_2 {O(n)} 0: f2->f300, Arg_3: Arg_3 {O(n)} 1: f300->f300, Arg_0: Arg_0 {O(n)} 1: f300->f300, Arg_1: Arg_1+2*max([0, 1+Arg_0-Arg_1]) {O(n)} 1: f300->f300, Arg_3: Arg_3 {O(n)} 2: f300->f300, Arg_0: Arg_0 {O(n)} 2: f300->f300, Arg_1: Arg_1+2*max([0, 1+Arg_0-Arg_1]) {O(n)} 2: f300->f300, Arg_2: -1 {O(1)} 2: f300->f300, Arg_3: Arg_3 {O(n)} 3: f300->f300, Arg_0: Arg_0 {O(n)} 3: f300->f300, Arg_1: Arg_1+2*max([0, 1+Arg_0-Arg_1]) {O(n)} 3: f300->f300, Arg_2: 0 {O(1)} 3: f300->f300, Arg_3: Arg_3 {O(n)} 4: f300->f1, Arg_0: Arg_0 {O(n)} 4: f300->f1, Arg_1: max([Arg_1, Arg_1+2*max([0, 1+Arg_0-Arg_1])]) {O(n)} ---------------------------------------- (2) BOUNDS(1, nat(2 + 2 * Arg_0 + -2 * Arg_1) + max(2, 3 + Arg_0 + -1 * Arg_1)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f2 0: f2 -> f300 : [], cost: 1 1: f300 -> f300 : B'=1+B, C'=free, [ free>=1 && A>=1+B ], cost: 1 2: f300 -> f300 : B'=1+B, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1 3: f300 -> f300 : A'=-1+A, C'=0, [ A>=1+B ], cost: 1 4: f300 -> f1 : D'=free_2, [ B>=A ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: f2 -> f300 : [], cost: 1 Removed unreachable and leaf rules: Start location: f2 0: f2 -> f300 : [], cost: 1 1: f300 -> f300 : B'=1+B, C'=free, [ free>=1 && A>=1+B ], cost: 1 2: f300 -> f300 : B'=1+B, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1 3: f300 -> f300 : A'=-1+A, C'=0, [ A>=1+B ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f300 -> f300 : B'=1+B, C'=free, [ free>=1 && A>=1+B ], cost: 1 2: f300 -> f300 : B'=1+B, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1 3: f300 -> f300 : A'=-1+A, C'=0, [ A>=1+B ], cost: 1 Accelerated rule 1 with metering function A-B, yielding the new rule 5. Accelerated rule 2 with metering function A-B, yielding the new rule 6. Accelerated rule 3 with metering function A-B, yielding the new rule 7. Removing the simple loops: 1 2 3. Accelerated all simple loops using metering functions (where possible): Start location: f2 0: f2 -> f300 : [], cost: 1 5: f300 -> f300 : B'=A, C'=free, [ free>=1 && A>=1+B ], cost: A-B 6: f300 -> f300 : B'=A, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: A-B 7: f300 -> f300 : A'=B, C'=0, [ A>=1+B ], cost: A-B Chained accelerated rules (with incoming rules): Start location: f2 0: f2 -> f300 : [], cost: 1 8: f2 -> f300 : B'=A, C'=free, [ free>=1 && A>=1+B ], cost: 1+A-B 9: f2 -> f300 : B'=A, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1+A-B 10: f2 -> f300 : A'=B, C'=0, [ A>=1+B ], cost: 1+A-B Removed unreachable locations (and leaf rules with constant cost): Start location: f2 8: f2 -> f300 : B'=A, C'=free, [ free>=1 && A>=1+B ], cost: 1+A-B 9: f2 -> f300 : B'=A, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1+A-B 10: f2 -> f300 : A'=B, C'=0, [ A>=1+B ], cost: 1+A-B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f2 8: f2 -> f300 : B'=A, C'=free, [ free>=1 && A>=1+B ], cost: 1+A-B 9: f2 -> f300 : B'=A, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1+A-B 10: f2 -> f300 : A'=B, C'=0, [ A>=1+B ], cost: 1+A-B Computing asymptotic complexity for rule 8 Solved the limit problem by the following transformations: Created initial limit problem: free (+/+!), A-B (+/+!), 1+A-B (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {free==1,A==0,B==-n} resulting limit problem: [solved] Solution: free / 1 A / 0 B / -n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+A-B Rule guard: [ free>=1 && A>=1+B ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)