/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, max(1, 2 + Arg_0)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 32 ms] (2) BOUNDS(1, max(1, 2 + Arg_0)) (3) Loat Proof [FINISHED, 133 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f0(A) -> Com_1(f1(A)) :|: TRUE f1(A) -> Com_1(f1(A - 1000)) :|: A >= 1001 The start-symbols are:[f0_1] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([1, 2+Arg_0]) {O(n)}) Initial Complexity Problem: Start: f0 Program_Vars: Arg_0 Temp_Vars: Locations: f0, f1 Transitions: 0: f0->f1 1: f1->f1 Timebounds: Overall timebound: max([1, 2+Arg_0]) {O(n)} 0: f0->f1: 1 {O(1)} 1: f1->f1: max([0, 1+Arg_0]) {O(n)} Costbounds: Overall costbound: max([1, 2+Arg_0]) {O(n)} 0: f0->f1: 1 {O(1)} 1: f1->f1: max([0, 1+Arg_0]) {O(n)} Sizebounds: `Lower: 0: f0->f1, Arg_0: Arg_0 {O(n)} 1: f1->f1, Arg_0: 1 {O(1)} `Upper: 0: f0->f1, Arg_0: Arg_0 {O(n)} 1: f1->f1, Arg_0: Arg_0 {O(n)} ---------------------------------------- (2) BOUNDS(1, max(1, 2 + Arg_0)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f0 0: f0 -> f1 : [], cost: 1 1: f1 -> f1 : A'=-1000+A, [ A>=1001 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: f0 -> f1 : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f1 -> f1 : A'=-1000+A, [ A>=1001 ], cost: 1 Accelerated rule 1 with metering function meter (where 1000*meter==-1000+A), yielding the new rule 2. Removing the simple loops: 1. Accelerated all simple loops using metering functions (where possible): Start location: f0 0: f0 -> f1 : [], cost: 1 2: f1 -> f1 : A'=-1000*meter+A, [ A>=1001 && 1000*meter==-1000+A && meter>=1 ], cost: meter Chained accelerated rules (with incoming rules): Start location: f0 0: f0 -> f1 : [], cost: 1 3: f0 -> f1 : A'=-1000*meter+A, [ A>=1001 && 1000*meter==-1000+A && meter>=1 ], cost: 1+meter Removed unreachable locations (and leaf rules with constant cost): Start location: f0 3: f0 -> f1 : A'=-1000*meter+A, [ A>=1001 && 1000*meter==-1000+A && meter>=1 ], cost: 1+meter ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f0 3: f0 -> f1 : A'=-1000*meter+A, [ A>=1001 && 1000*meter==-1000+A && meter>=1 ], cost: 1+meter Computing asymptotic complexity for rule 3 Solved the limit problem by the following transformations: Created initial limit problem: 1+meter (+), -999-1000*meter+A (+/+!), 1001+1000*meter-A (+/+!), -1000+A (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {meter==n,A==1000+1000*n} resulting limit problem: [solved] Solution: meter / n A / 1000+1000*n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+meter Rule guard: [ A>=1001 && 1000*meter==-1000+A ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)