/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 203 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 1598 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f0(A, B, C, D) -> Com_1(f4(0, B, C, D)) :|: TRUE f4(A, B, C, D) -> Com_1(f8(A + 1, B, 0, D)) :|: B >= A + 1 f8(A, B, C, D) -> Com_1(f16(A, B, C, 0)) :|: B >= A + 1 f8(A, B, C, D) -> Com_1(f16(A, B, C, D)) :|: A >= B f8(A, B, C, D) -> Com_1(f8(A + 1, B, C + 1, E)) :|: B >= A + 1 && 0 >= E + 1 f8(A, B, C, D) -> Com_1(f8(A + 1, B, C + 1, E)) :|: B >= A + 1 && E >= 1 f16(A, B, C, D) -> Com_1(f4(A, B, C, D)) :|: 0 >= C f16(A, B, C, D) -> Com_1(f4(A - 1, B, C, D)) :|: C >= 1 f4(A, B, C, D) -> Com_1(f20(A, B, C, D)) :|: A >= B The start-symbols are:[f0_4] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 17*Ar_1 + 2) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f4(0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f8(Ar_0 + 1, Ar_1, 0, Ar_3)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f16(Ar_0, Ar_1, Ar_2, 0)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f16(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f8(Ar_0 + 1, Ar_1, Ar_2 + 1, Fresh_1)) [ Ar_1 >= Ar_0 + 1 /\ 0 >= Fresh_1 + 1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f8(Ar_0 + 1, Ar_1, Ar_2 + 1, Fresh_0)) [ Ar_1 >= Ar_0 + 1 /\ Fresh_0 >= 1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f4(Ar_0 - 1, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f20(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [Ar_0, Ar_1, Ar_2]. We thus obtain the following problem: 2: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f20(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_0 + 1 /\ Fresh_0 >= 1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_0 + 1 /\ 0 >= Fresh_1 + 1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f16(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f16(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, 0)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f4(0, Ar_1, Ar_2)) start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f20(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_0 + 1 /\ Fresh_0 >= 1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_0 + 1 /\ 0 >= Fresh_1 + 1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f16(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f16(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, 0)) [ Ar_1 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f4(0, Ar_1, Ar_2)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = 1 Pol(f0) = 1 Pol(f4) = 1 Pol(f20) = 0 Pol(f16) = 1 Pol(f8) = 1 orients all transitions weakly and the transition f4(Ar_0, Ar_1, Ar_2) -> Com_1(f20(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: 1, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f20(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_0 + 1 /\ Fresh_0 >= 1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_0 + 1 /\ 0 >= Fresh_1 + 1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f16(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f16(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, 0)) [ Ar_1 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f4(0, Ar_1, Ar_2)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = V_2 Pol(f0) = V_2 - 1 Pol(f4) = -V_1 + V_2 - 1 Pol(f20) = -V_1 + V_2 - 1 Pol(f16) = -V_1 + V_2 Pol(f8) = -V_1 + V_2 orients all transitions weakly and the transitions f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_0 + 1 /\ Fresh_0 >= 1 ] f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_0 + 1 /\ 0 >= Fresh_1 + 1 ] strictly and produces the following problem: 5: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: 1, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f20(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_2 ] (Comp: Ar_1, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_0 + 1 /\ Fresh_0 >= 1 ] (Comp: Ar_1, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_0 + 1 /\ 0 >= Fresh_1 + 1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f16(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f16(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, 0)) [ Ar_1 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f4(0, Ar_1, Ar_2)) start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 5 to obtain the following invariants: For symbol f16: X_2 - X_3 - 1 >= 0 /\ X_1 - X_3 - 1 >= 0 /\ X_3 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 - 1 >= 0 /\ X_2 - 1 >= 0 /\ X_1 + X_2 - 2 >= 0 /\ -X_1 + X_2 >= 0 /\ X_1 - 1 >= 0 For symbol f4: X_1 >= 0 For symbol f8: X_2 - X_3 - 1 >= 0 /\ X_1 - X_3 - 1 >= 0 /\ X_3 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 - 1 >= 0 /\ X_2 - 1 >= 0 /\ X_1 + X_2 - 2 >= 0 /\ -X_1 + X_2 >= 0 /\ X_1 - 1 >= 0 This yielded the following problem: 6: T: (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f4(0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, 0)) [ Ar_0 >= 0 /\ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f16(Ar_0, Ar_1, Ar_2)) [ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_0 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f16(Ar_0, Ar_1, Ar_2)) [ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_0 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_0 >= Ar_1 ] (Comp: Ar_1, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, Ar_2 + 1)) [ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_0 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_1 >= Ar_0 + 1 /\ 0 >= Fresh_1 + 1 ] (Comp: Ar_1, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, Ar_2 + 1)) [ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_0 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_1 >= Ar_0 + 1 /\ Fresh_0 >= 1 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1, Ar_2)) [ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_0 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 >= 0 /\ Ar_0 - 1 >= 0 /\ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f16(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_0 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_2 >= 1 ] (Comp: 1, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f20(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 0 /\ Ar_0 >= Ar_1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f0) = 3*V_2 Pol(f4) = -3*V_1 + 3*V_2 Pol(f8) = -3*V_1 + 3*V_2 + 3*V_3 + 2 Pol(f16) = -3*V_1 + 3*V_2 + 3*V_3 + 1 Pol(f20) = -3*V_1 + 3*V_2 Pol(koat_start) = 3*V_2 orients all transitions weakly and the transitions f8(Ar_0, Ar_1, Ar_2) -> Com_1(f16(Ar_0, Ar_1, Ar_2)) [ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_0 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_1 >= Ar_0 + 1 ] f8(Ar_0, Ar_1, Ar_2) -> Com_1(f16(Ar_0, Ar_1, Ar_2)) [ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_0 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_0 >= Ar_1 ] f4(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, 0)) [ Ar_0 >= 0 /\ Ar_1 >= Ar_0 + 1 ] f16(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1, Ar_2)) [ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_0 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 >= 0 /\ Ar_0 - 1 >= 0 /\ 0 >= Ar_2 ] f16(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_0 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_2 >= 1 ] strictly and produces the following problem: 7: T: (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f4(0, Ar_1, Ar_2)) (Comp: 3*Ar_1, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, 0)) [ Ar_0 >= 0 /\ Ar_1 >= Ar_0 + 1 ] (Comp: 3*Ar_1, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f16(Ar_0, Ar_1, Ar_2)) [ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_0 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_1 >= Ar_0 + 1 ] (Comp: 3*Ar_1, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f16(Ar_0, Ar_1, Ar_2)) [ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_0 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_0 >= Ar_1 ] (Comp: Ar_1, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, Ar_2 + 1)) [ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_0 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_1 >= Ar_0 + 1 /\ 0 >= Fresh_1 + 1 ] (Comp: Ar_1, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 1, Ar_1, Ar_2 + 1)) [ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_0 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_1 >= Ar_0 + 1 /\ Fresh_0 >= 1 ] (Comp: 3*Ar_1, Cost: 1) f16(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1, Ar_2)) [ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_0 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 >= 0 /\ Ar_0 - 1 >= 0 /\ 0 >= Ar_2 ] (Comp: 3*Ar_1, Cost: 1) f16(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_0 - Ar_2 - 1 >= 0 /\ Ar_2 >= 0 /\ Ar_1 + Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ -Ar_0 + Ar_1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_2 >= 1 ] (Comp: 1, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f20(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 0 /\ Ar_0 >= Ar_1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 17*Ar_1 + 2 Time: 0.292 sec (SMT: 0.243 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f0 0: f0 -> f4 : A'=0, [], cost: 1 1: f4 -> f8 : A'=1+A, C'=0, [ B>=1+A ], cost: 1 8: f4 -> f20 : [ A>=B ], cost: 1 2: f8 -> f16 : D'=0, [ B>=1+A ], cost: 1 3: f8 -> f16 : [ A>=B ], cost: 1 4: f8 -> f8 : A'=1+A, C'=1+C, D'=free, [ B>=1+A && 0>=1+free ], cost: 1 5: f8 -> f8 : A'=1+A, C'=1+C, D'=free_1, [ B>=1+A && free_1>=1 ], cost: 1 6: f16 -> f4 : [ 0>=C ], cost: 1 7: f16 -> f4 : A'=-1+A, [ C>=1 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: f0 -> f4 : A'=0, [], cost: 1 Removed unreachable and leaf rules: Start location: f0 0: f0 -> f4 : A'=0, [], cost: 1 1: f4 -> f8 : A'=1+A, C'=0, [ B>=1+A ], cost: 1 2: f8 -> f16 : D'=0, [ B>=1+A ], cost: 1 3: f8 -> f16 : [ A>=B ], cost: 1 4: f8 -> f8 : A'=1+A, C'=1+C, D'=free, [ B>=1+A && 0>=1+free ], cost: 1 5: f8 -> f8 : A'=1+A, C'=1+C, D'=free_1, [ B>=1+A && free_1>=1 ], cost: 1 6: f16 -> f4 : [ 0>=C ], cost: 1 7: f16 -> f4 : A'=-1+A, [ C>=1 ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 2. Accelerating the following rules: 4: f8 -> f8 : A'=1+A, C'=1+C, D'=free, [ B>=1+A && 0>=1+free ], cost: 1 5: f8 -> f8 : A'=1+A, C'=1+C, D'=free_1, [ B>=1+A && free_1>=1 ], cost: 1 Accelerated rule 4 with metering function -A+B, yielding the new rule 9. Accelerated rule 5 with metering function -A+B, yielding the new rule 10. Removing the simple loops: 4 5. Accelerated all simple loops using metering functions (where possible): Start location: f0 0: f0 -> f4 : A'=0, [], cost: 1 1: f4 -> f8 : A'=1+A, C'=0, [ B>=1+A ], cost: 1 2: f8 -> f16 : D'=0, [ B>=1+A ], cost: 1 3: f8 -> f16 : [ A>=B ], cost: 1 9: f8 -> f8 : A'=B, C'=C-A+B, D'=free, [ B>=1+A && 0>=1+free ], cost: -A+B 10: f8 -> f8 : A'=B, C'=C-A+B, D'=free_1, [ B>=1+A && free_1>=1 ], cost: -A+B 6: f16 -> f4 : [ 0>=C ], cost: 1 7: f16 -> f4 : A'=-1+A, [ C>=1 ], cost: 1 Chained accelerated rules (with incoming rules): Start location: f0 0: f0 -> f4 : A'=0, [], cost: 1 1: f4 -> f8 : A'=1+A, C'=0, [ B>=1+A ], cost: 1 11: f4 -> f8 : A'=B, C'=-1-A+B, D'=free, [ B>=2+A && 0>=1+free ], cost: -A+B 12: f4 -> f8 : A'=B, C'=-1-A+B, D'=free_1, [ B>=2+A && free_1>=1 ], cost: -A+B 2: f8 -> f16 : D'=0, [ B>=1+A ], cost: 1 3: f8 -> f16 : [ A>=B ], cost: 1 6: f16 -> f4 : [ 0>=C ], cost: 1 7: f16 -> f4 : A'=-1+A, [ C>=1 ], cost: 1 Eliminated locations (on tree-shaped paths): Start location: f0 0: f0 -> f4 : A'=0, [], cost: 1 13: f4 -> f16 : A'=1+A, C'=0, D'=0, [ B>=2+A ], cost: 2 14: f4 -> f16 : A'=1+A, C'=0, [ B>=1+A && 1+A>=B ], cost: 2 15: f4 -> f16 : A'=B, C'=-1-A+B, D'=free, [ B>=2+A && 0>=1+free ], cost: 1-A+B 16: f4 -> f16 : A'=B, C'=-1-A+B, D'=free_1, [ B>=2+A && free_1>=1 ], cost: 1-A+B 17: f4 -> [6] : [ B>=2+A && 0>=1+free ], cost: -A+B 18: f4 -> [6] : [ B>=2+A && free_1>=1 ], cost: -A+B 6: f16 -> f4 : [ 0>=C ], cost: 1 7: f16 -> f4 : A'=-1+A, [ C>=1 ], cost: 1 Eliminated locations (on tree-shaped paths): Start location: f0 0: f0 -> f4 : A'=0, [], cost: 1 17: f4 -> [6] : [ B>=2+A && 0>=1+free ], cost: -A+B 18: f4 -> [6] : [ B>=2+A && free_1>=1 ], cost: -A+B 19: f4 -> f4 : A'=1+A, C'=0, D'=0, [ B>=2+A ], cost: 3 20: f4 -> f4 : A'=1+A, C'=0, [ B>=1+A && 1+A>=B ], cost: 3 21: f4 -> f4 : A'=-1+B, C'=-1-A+B, D'=free, [ B>=2+A && 0>=1+free ], cost: 2-A+B 22: f4 -> f4 : A'=-1+B, C'=-1-A+B, D'=free_1, [ B>=2+A && free_1>=1 ], cost: 2-A+B 23: f4 -> [7] : [ B>=2+A && 0>=1+free ], cost: 1-A+B 24: f4 -> [7] : [ B>=2+A && free_1>=1 ], cost: 1-A+B Accelerating simple loops of location 1. Simplified some of the simple loops (and removed duplicate rules). Accelerating the following rules: 19: f4 -> f4 : A'=1+A, C'=0, D'=0, [ B>=2+A ], cost: 3 20: f4 -> f4 : A'=1+A, C'=0, [ 1+A-B==0 ], cost: 3 21: f4 -> f4 : A'=-1+B, C'=-1-A+B, D'=free, [ B>=2+A && 0>=1+free ], cost: 2-A+B 22: f4 -> f4 : A'=-1+B, C'=-1-A+B, D'=free_1, [ B>=2+A && free_1>=1 ], cost: 2-A+B Accelerated rule 19 with metering function -1-A+B, yielding the new rule 25. Accelerated rule 20 with metering function -A+B, yielding the new rule 26. Found no metering function for rule 21. Found no metering function for rule 22. Removing the simple loops: 19 20. Accelerated all simple loops using metering functions (where possible): Start location: f0 0: f0 -> f4 : A'=0, [], cost: 1 17: f4 -> [6] : [ B>=2+A && 0>=1+free ], cost: -A+B 18: f4 -> [6] : [ B>=2+A && free_1>=1 ], cost: -A+B 21: f4 -> f4 : A'=-1+B, C'=-1-A+B, D'=free, [ B>=2+A && 0>=1+free ], cost: 2-A+B 22: f4 -> f4 : A'=-1+B, C'=-1-A+B, D'=free_1, [ B>=2+A && free_1>=1 ], cost: 2-A+B 23: f4 -> [7] : [ B>=2+A && 0>=1+free ], cost: 1-A+B 24: f4 -> [7] : [ B>=2+A && free_1>=1 ], cost: 1-A+B 25: f4 -> f4 : A'=-1+B, C'=0, D'=0, [ B>=2+A ], cost: -3-3*A+3*B 26: f4 -> f4 : A'=B, C'=0, [ 1+A-B==0 ], cost: -3*A+3*B Chained accelerated rules (with incoming rules): Start location: f0 0: f0 -> f4 : A'=0, [], cost: 1 27: f0 -> f4 : A'=-1+B, C'=-1+B, D'=free, [ B>=2 && 0>=1+free ], cost: 3+B 28: f0 -> f4 : A'=-1+B, C'=-1+B, D'=free_1, [ B>=2 && free_1>=1 ], cost: 3+B 29: f0 -> f4 : A'=-1+B, C'=0, D'=0, [ B>=2 ], cost: -2+3*B 30: f0 -> f4 : A'=B, C'=0, [ 1-B==0 ], cost: 1+3*B 17: f4 -> [6] : [ B>=2+A && 0>=1+free ], cost: -A+B 18: f4 -> [6] : [ B>=2+A && free_1>=1 ], cost: -A+B 23: f4 -> [7] : [ B>=2+A && 0>=1+free ], cost: 1-A+B 24: f4 -> [7] : [ B>=2+A && free_1>=1 ], cost: 1-A+B Eliminated locations (on tree-shaped paths): Start location: f0 31: f0 -> [6] : A'=0, [ B>=2 && 0>=1+free ], cost: 1+B 32: f0 -> [6] : A'=0, [ B>=2 && free_1>=1 ], cost: 1+B 33: f0 -> [7] : A'=0, [ B>=2 && 0>=1+free ], cost: 2+B 34: f0 -> [7] : A'=0, [ B>=2 && free_1>=1 ], cost: 2+B 35: f0 -> [9] : [ B>=2 && 0>=1+free ], cost: 3+B 36: f0 -> [9] : [ B>=2 && free_1>=1 ], cost: 3+B 37: f0 -> [9] : [ B>=2 ], cost: -2+3*B 38: f0 -> [9] : [ 1-B==0 ], cost: 1+3*B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f0 35: f0 -> [9] : [ B>=2 && 0>=1+free ], cost: 3+B 36: f0 -> [9] : [ B>=2 && free_1>=1 ], cost: 3+B 37: f0 -> [9] : [ B>=2 ], cost: -2+3*B 38: f0 -> [9] : [ 1-B==0 ], cost: 1+3*B Computing asymptotic complexity for rule 35 Solved the limit problem by the following transformations: Created initial limit problem: -1+B (+/+!), 3+B (+), -free (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {free==-n,B==n} resulting limit problem: [solved] Solution: free / -n B / n Resulting cost 3+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 3+n Rule cost: 3+B Rule guard: [ B>=2 && 0>=1+free ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)