/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, nat(1 + -100 * Arg_1) + max(2, 3 + -1 * Arg_1) + nat(100 + -1 * Arg_0 + Arg_1 * Arg_0 + -100 * Arg_1) + nat(1 + -1 * Arg_0)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 445 ms] (2) BOUNDS(1, nat(1 + -100 * Arg_1) + max(2, 3 + -1 * Arg_1) + nat(100 + -1 * Arg_0 + Arg_1 * Arg_0 + -100 * Arg_1) + nat(1 + -1 * Arg_0)) (3) Loat Proof [FINISHED, 836 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f300(A, B, C) -> Com_1(f300(-(99) + A, 0, C)) :|: 0 >= A + 1 && B + 1 >= 0 && B + 1 <= 0 f300(A, B, C) -> Com_1(f300(1 + A, 1 + B, C)) :|: 0 >= A + 1 && B >= 0 f300(A, B, C) -> Com_1(f300(1 + A, 1 + B, C)) :|: 0 >= A + 1 && 0 >= 2 + B f300(A, B, C) -> Com_1(f1(A, B, D)) :|: A >= 0 f2(A, B, C) -> Com_1(f300(A, B, C)) :|: TRUE The start-symbols are:[f2_3] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, max([0, 1+-100*Arg_1])+max([2, 3-Arg_1])+max([0, (1-Arg_1)*(100-Arg_0)])+max([0, 1-Arg_0]) {O(n^2)}) Initial Complexity Problem: Start: f2 Program_Vars: Arg_0, Arg_1, Arg_2 Temp_Vars: D Locations: f1, f2, f300 Transitions: 4: f2->f300 3: f300->f1 0: f300->f300 1: f300->f300 2: f300->f300 Timebounds: Overall timebound: max([0, 1+-100*Arg_1])+max([2, 3-Arg_1])+max([0, (1-Arg_1)*(100-Arg_0)])+max([0, 1-Arg_0]) {O(n^2)} 4: f2->f300: 1 {O(1)} 0: f300->f300: max([0, 1-Arg_1]) {O(n)} 1: f300->f300: max([0, (1-Arg_1)*(100-Arg_0)])+max([0, 1-Arg_0]) {O(n^2)} 2: f300->f300: max([0, 1+-100*Arg_1]) {O(n)} 3: f300->f1: 1 {O(1)} Costbounds: Overall costbound: max([0, 1+-100*Arg_1])+max([2, 3-Arg_1])+max([0, (1-Arg_1)*(100-Arg_0)])+max([0, 1-Arg_0]) {O(n^2)} 4: f2->f300: 1 {O(1)} 0: f300->f300: max([0, 1-Arg_1]) {O(n)} 1: f300->f300: max([0, (1-Arg_1)*(100-Arg_0)])+max([0, 1-Arg_0]) {O(n^2)} 2: f300->f300: max([0, 1+-100*Arg_1]) {O(n)} 3: f300->f1: 1 {O(1)} Sizebounds: `Lower: 4: f2->f300, Arg_0: Arg_0 {O(n)} 4: f2->f300, Arg_1: Arg_1 {O(n)} 4: f2->f300, Arg_2: Arg_2 {O(n)} 0: f300->f300, Arg_0: -99+Arg_0 {O(n)} 0: f300->f300, Arg_1: 0 {O(1)} 0: f300->f300, Arg_2: Arg_2 {O(n)} 1: f300->f300, Arg_0: min([Arg_0, -(99-Arg_0)]) {O(n)} 1: f300->f300, Arg_1: 1 {O(1)} 1: f300->f300, Arg_2: Arg_2 {O(n)} 2: f300->f300, Arg_0: Arg_0 {O(n)} 2: f300->f300, Arg_1: Arg_1 {O(n)} 2: f300->f300, Arg_2: Arg_2 {O(n)} 3: f300->f1, Arg_0: 0 {O(1)} 3: f300->f1, Arg_1: min([1, Arg_1]) {O(n)} `Upper: 4: f2->f300, Arg_0: Arg_0 {O(n)} 4: f2->f300, Arg_1: Arg_1 {O(n)} 4: f2->f300, Arg_2: Arg_2 {O(n)} 0: f300->f300, Arg_0: -100 {O(1)} 0: f300->f300, Arg_1: 0 {O(1)} 0: f300->f300, Arg_2: Arg_2 {O(n)} 1: f300->f300, Arg_0: 0 {O(1)} 1: f300->f300, Arg_1: max([0, (1-Arg_1)*(100-Arg_0)])+max([0, 1-Arg_0])+max([0, Arg_1]) {O(n^2)} 1: f300->f300, Arg_2: Arg_2 {O(n)} 2: f300->f300, Arg_0: 0 {O(1)} 2: f300->f300, Arg_1: -1 {O(1)} 2: f300->f300, Arg_2: Arg_2 {O(n)} 3: f300->f1, Arg_0: max([0, Arg_0]) {O(n)} 3: f300->f1, Arg_1: max([-1, max([Arg_1, max([0, (1-Arg_1)*(100-Arg_0)])+max([0, 1-Arg_0])+max([0, Arg_1])])]) {O(n^2)} ---------------------------------------- (2) BOUNDS(1, nat(1 + -100 * Arg_1) + max(2, 3 + -1 * Arg_1) + nat(100 + -1 * Arg_0 + Arg_1 * Arg_0 + -100 * Arg_1) + nat(1 + -1 * Arg_0)) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f2 0: f300 -> f300 : A'=-99+A, B'=0, [ 0>=1+A && 1+B==0 ], cost: 1 1: f300 -> f300 : A'=1+A, B'=1+B, [ 0>=1+A && B>=0 ], cost: 1 2: f300 -> f300 : A'=1+A, B'=1+B, [ 0>=1+A && 0>=2+B ], cost: 1 3: f300 -> f1 : C'=free, [ A>=0 ], cost: 1 4: f2 -> f300 : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 4: f2 -> f300 : [], cost: 1 Removed unreachable and leaf rules: Start location: f2 0: f300 -> f300 : A'=-99+A, B'=0, [ 0>=1+A && 1+B==0 ], cost: 1 1: f300 -> f300 : A'=1+A, B'=1+B, [ 0>=1+A && B>=0 ], cost: 1 2: f300 -> f300 : A'=1+A, B'=1+B, [ 0>=1+A && 0>=2+B ], cost: 1 4: f2 -> f300 : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: f300 -> f300 : A'=-99+A, B'=0, [ 0>=1+A && 1+B==0 ], cost: 1 1: f300 -> f300 : A'=1+A, B'=1+B, [ 0>=1+A && B>=0 ], cost: 1 2: f300 -> f300 : A'=1+A, B'=1+B, [ 0>=1+A && 0>=2+B ], cost: 1 Accelerated rule 0 with metering function -B, yielding the new rule 5. Accelerated rule 1 with metering function -A, yielding the new rule 6. Accelerated rule 2 with metering function -1-A (after adding A>=B), yielding the new rule 7. Accelerated rule 2 with metering function -1-B (after adding A<=B), yielding the new rule 8. Removing the simple loops: 0 1 2. Accelerated all simple loops using metering functions (where possible): Start location: f2 5: f300 -> f300 : A'=A+99*B, B'=0, [ 0>=1+A && 1+B==0 ], cost: -B 6: f300 -> f300 : A'=0, B'=-A+B, [ 0>=1+A && B>=0 ], cost: -A 7: f300 -> f300 : A'=-1, B'=-1-A+B, [ 0>=2+B && A>=B && -1-A>=1 ], cost: -1-A 8: f300 -> f300 : A'=-1+A-B, B'=-1, [ 0>=1+A && 0>=2+B && A<=B ], cost: -1-B 4: f2 -> f300 : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: f2 4: f2 -> f300 : [], cost: 1 9: f2 -> f300 : A'=A+99*B, B'=0, [ 0>=1+A && 1+B==0 ], cost: 1-B 10: f2 -> f300 : A'=0, B'=-A+B, [ 0>=1+A && B>=0 ], cost: 1-A 11: f2 -> f300 : A'=-1, B'=-1-A+B, [ 0>=2+B && A>=B && -1-A>=1 ], cost: -A 12: f2 -> f300 : A'=-1+A-B, B'=-1, [ 0>=1+A && 0>=2+B && A<=B ], cost: -B Removed unreachable locations (and leaf rules with constant cost): Start location: f2 9: f2 -> f300 : A'=A+99*B, B'=0, [ 0>=1+A && 1+B==0 ], cost: 1-B 10: f2 -> f300 : A'=0, B'=-A+B, [ 0>=1+A && B>=0 ], cost: 1-A 11: f2 -> f300 : A'=-1, B'=-1-A+B, [ 0>=2+B && A>=B && -1-A>=1 ], cost: -A 12: f2 -> f300 : A'=-1+A-B, B'=-1, [ 0>=1+A && 0>=2+B && A<=B ], cost: -B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f2 9: f2 -> f300 : A'=A+99*B, B'=0, [ 0>=1+A && 1+B==0 ], cost: 1-B 10: f2 -> f300 : A'=0, B'=-A+B, [ 0>=1+A && B>=0 ], cost: 1-A 11: f2 -> f300 : A'=-1, B'=-1-A+B, [ 0>=2+B && A>=B && -1-A>=1 ], cost: -A 12: f2 -> f300 : A'=-1+A-B, B'=-1, [ 0>=1+A && 0>=2+B && A<=B ], cost: -B Computing asymptotic complexity for rule 9 Could not solve the limit problem. Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 10 Solved the limit problem by the following transformations: Created initial limit problem: -A (+/+!), 1-A (+), 1+B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==-n,B==n} resulting limit problem: [solved] Solution: A / -n B / n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1-A Rule guard: [ 0>=1+A && B>=0 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)