/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 148 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 619 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f0(A, B, C, D, E) -> Com_1(f1(A, B, C, D, E)) :|: TRUE f1(A, B, C, D, E) -> Com_1(f1(A, B + 1, C, D, E)) :|: A >= B + 1 f1(A, B, C, D, E) -> Com_1(f2(A, B, B, D, E)) :|: B >= A f2(A, B, C, D, E) -> Com_1(f2(A, B, C - 1, D, E)) :|: C >= 1 f2(A, B, C, D, E) -> Com_1(f3(A, B, C, C, E)) :|: 0 >= C f3(A, B, C, D, E) -> Com_1(f3(A, B, C, D + 1, E)) :|: A >= D + 1 f3(A, B, C, D, E) -> Com_1(f4(A, B, C, D, D)) :|: D >= A f4(A, B, C, D, E) -> Com_1(f4(A, B, C, D, E - 1)) :|: E >= 1 The start-symbols are:[f0_5] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 88*Ar_0 + 85*Ar_1 + 10) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) (Comp: ?, Cost: 1) f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1 + 1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_1, Ar_3, Ar_4)) [ Ar_1 >= Ar_0 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_3)) [ Ar_3 >= Ar_0 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) (Comp: ?, Cost: 1) f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1 + 1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_1, Ar_3, Ar_4)) [ Ar_1 >= Ar_0 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_3)) [ Ar_3 >= Ar_0 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f0) = 3 Pol(f1) = 3 Pol(f2) = 2 Pol(f3) = 1 Pol(f4) = 0 Pol(koat_start) = 3 orients all transitions weakly and the transitions f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_3)) [ Ar_3 >= Ar_0 ] f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4)) [ 0 >= Ar_2 ] f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_1, Ar_3, Ar_4)) [ Ar_1 >= Ar_0 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) (Comp: ?, Cost: 1) f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1 + 1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_1 + 1 ] (Comp: 3, Cost: 1) f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_1, Ar_3, Ar_4)) [ Ar_1 >= Ar_0 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ] (Comp: 3, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ] (Comp: 3, Cost: 1) f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_3)) [ Ar_3 >= Ar_0 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f0) = V_1 - V_2 Pol(f1) = V_1 - V_2 Pol(f2) = V_1 - V_2 Pol(f3) = V_1 - V_2 + V_3 - V_4 Pol(f4) = V_1 - V_2 + V_3 - V_4 Pol(koat_start) = V_1 - V_2 orients all transitions weakly and the transition f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1 + 1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_1 + 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) (Comp: Ar_0 + Ar_1, Cost: 1) f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1 + 1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_1 + 1 ] (Comp: 3, Cost: 1) f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_1, Ar_3, Ar_4)) [ Ar_1 >= Ar_0 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ] (Comp: 3, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ] (Comp: 3, Cost: 1) f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_3)) [ Ar_3 >= Ar_0 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f3) = V_1 - V_4 and size complexities S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ]", 0-1) = Ar_1 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ]", 0-2) = Ar_2 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ]", 0-3) = Ar_3 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ]", 0-4) = Ar_4 S("f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ]", 0-0) = Ar_0 S("f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ]", 0-1) = 2*Ar_0 + 2*Ar_1 S("f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ]", 0-2) = 2*Ar_0 + 2*Ar_1 S("f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ]", 0-3) = ? S("f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ]", 0-4) = ? S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_3)) [ Ar_3 >= Ar_0 ]", 0-0) = Ar_0 S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_3)) [ Ar_3 >= Ar_0 ]", 0-1) = 2*Ar_0 + 2*Ar_1 S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_3)) [ Ar_3 >= Ar_0 ]", 0-2) = 2*Ar_0 + 2*Ar_1 S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_3)) [ Ar_3 >= Ar_0 ]", 0-3) = ? S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_3)) [ Ar_3 >= Ar_0 ]", 0-4) = ? S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ]", 0-0) = Ar_0 S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ]", 0-1) = 2*Ar_0 + 2*Ar_1 S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ]", 0-2) = 2*Ar_0 + 2*Ar_1 S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ]", 0-3) = ? S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ]", 0-4) = Ar_4 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4)) [ 0 >= Ar_2 ]", 0-0) = Ar_0 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4)) [ 0 >= Ar_2 ]", 0-1) = 2*Ar_0 + 2*Ar_1 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4)) [ 0 >= Ar_2 ]", 0-2) = 2*Ar_0 + 2*Ar_1 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4)) [ 0 >= Ar_2 ]", 0-3) = 2*Ar_0 + 2*Ar_1 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4)) [ 0 >= Ar_2 ]", 0-4) = Ar_4 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ]", 0-0) = Ar_0 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ]", 0-1) = 2*Ar_0 + 2*Ar_1 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ]", 0-2) = 2*Ar_0 + 2*Ar_1 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ]", 0-3) = Ar_3 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ]", 0-4) = Ar_4 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_1, Ar_3, Ar_4)) [ Ar_1 >= Ar_0 ]", 0-0) = Ar_0 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_1, Ar_3, Ar_4)) [ Ar_1 >= Ar_0 ]", 0-1) = 2*Ar_0 + 2*Ar_1 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_1, Ar_3, Ar_4)) [ Ar_1 >= Ar_0 ]", 0-2) = 2*Ar_0 + 2*Ar_1 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_1, Ar_3, Ar_4)) [ Ar_1 >= Ar_0 ]", 0-3) = Ar_3 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_1, Ar_3, Ar_4)) [ Ar_1 >= Ar_0 ]", 0-4) = Ar_4 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1 + 1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_1 + 1 ]", 0-0) = Ar_0 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1 + 1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_1 + 1 ]", 0-1) = 2*Ar_0 + 2*Ar_1 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1 + 1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_1 + 1 ]", 0-2) = Ar_2 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1 + 1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_1 + 1 ]", 0-3) = Ar_3 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1 + 1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_1 + 1 ]", 0-4) = Ar_4 S("f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4))", 0-0) = Ar_0 S("f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4))", 0-1) = Ar_1 S("f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4))", 0-2) = Ar_2 S("f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4))", 0-3) = Ar_3 S("f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4))", 0-4) = Ar_4 orients the transitions f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ] weakly and the transition f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ] strictly and produces the following problem: 5: T: (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) (Comp: Ar_0 + Ar_1, Cost: 1) f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1 + 1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_1 + 1 ] (Comp: 3, Cost: 1) f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_1, Ar_3, Ar_4)) [ Ar_1 >= Ar_0 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ] (Comp: 3, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4)) [ 0 >= Ar_2 ] (Comp: 9*Ar_0 + 6*Ar_1, Cost: 1) f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ] (Comp: 3, Cost: 1) f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_3)) [ Ar_3 >= Ar_0 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f4) = V_5 Pol(f2) = V_3 and size complexities S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ]", 0-1) = Ar_1 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ]", 0-2) = Ar_2 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ]", 0-3) = Ar_3 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ]", 0-4) = Ar_4 S("f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ]", 0-0) = Ar_0 S("f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ]", 0-1) = 2*Ar_0 + 2*Ar_1 S("f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ]", 0-2) = 2*Ar_0 + 2*Ar_1 S("f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ]", 0-3) = 11*Ar_0 + 11*Ar_1 S("f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ]", 0-4) = 11*Ar_0 + 11*Ar_1 S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_3)) [ Ar_3 >= Ar_0 ]", 0-0) = Ar_0 S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_3)) [ Ar_3 >= Ar_0 ]", 0-1) = 2*Ar_0 + 2*Ar_1 S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_3)) [ Ar_3 >= Ar_0 ]", 0-2) = 2*Ar_0 + 2*Ar_1 S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_3)) [ Ar_3 >= Ar_0 ]", 0-3) = 11*Ar_0 + 11*Ar_1 S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_3)) [ Ar_3 >= Ar_0 ]", 0-4) = 11*Ar_0 + 11*Ar_1 S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ]", 0-0) = Ar_0 S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ]", 0-1) = 2*Ar_0 + 2*Ar_1 S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ]", 0-2) = 2*Ar_0 + 2*Ar_1 S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ]", 0-3) = 11*Ar_0 + 11*Ar_1 S("f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ]", 0-4) = Ar_4 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4)) [ 0 >= Ar_2 ]", 0-0) = Ar_0 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4)) [ 0 >= Ar_2 ]", 0-1) = 2*Ar_0 + 2*Ar_1 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4)) [ 0 >= Ar_2 ]", 0-2) = 2*Ar_0 + 2*Ar_1 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4)) [ 0 >= Ar_2 ]", 0-3) = 2*Ar_0 + 2*Ar_1 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4)) [ 0 >= Ar_2 ]", 0-4) = Ar_4 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ]", 0-0) = Ar_0 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ]", 0-1) = 2*Ar_0 + 2*Ar_1 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ]", 0-2) = 2*Ar_0 + 2*Ar_1 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ]", 0-3) = Ar_3 S("f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ]", 0-4) = Ar_4 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_1, Ar_3, Ar_4)) [ Ar_1 >= Ar_0 ]", 0-0) = Ar_0 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_1, Ar_3, Ar_4)) [ Ar_1 >= Ar_0 ]", 0-1) = 2*Ar_0 + 2*Ar_1 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_1, Ar_3, Ar_4)) [ Ar_1 >= Ar_0 ]", 0-2) = 2*Ar_0 + 2*Ar_1 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_1, Ar_3, Ar_4)) [ Ar_1 >= Ar_0 ]", 0-3) = Ar_3 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_1, Ar_3, Ar_4)) [ Ar_1 >= Ar_0 ]", 0-4) = Ar_4 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1 + 1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_1 + 1 ]", 0-0) = Ar_0 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1 + 1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_1 + 1 ]", 0-1) = 2*Ar_0 + 2*Ar_1 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1 + 1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_1 + 1 ]", 0-2) = Ar_2 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1 + 1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_1 + 1 ]", 0-3) = Ar_3 S("f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1 + 1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_1 + 1 ]", 0-4) = Ar_4 S("f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4))", 0-0) = Ar_0 S("f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4))", 0-1) = Ar_1 S("f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4))", 0-2) = Ar_2 S("f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4))", 0-3) = Ar_3 S("f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4))", 0-4) = Ar_4 orients the transitions f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ] f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ] weakly and the transitions f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ] f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ] strictly and produces the following problem: 6: T: (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) (Comp: Ar_0 + Ar_1, Cost: 1) f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f1(Ar_0, Ar_1 + 1, Ar_2, Ar_3, Ar_4)) [ Ar_0 >= Ar_1 + 1 ] (Comp: 3, Cost: 1) f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_1, Ar_3, Ar_4)) [ Ar_1 >= Ar_0 ] (Comp: 39*Ar_0 + 39*Ar_1, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f2(Ar_0, Ar_1, Ar_2 - 1, Ar_3, Ar_4)) [ Ar_2 >= 1 ] (Comp: 3, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_2, Ar_4)) [ 0 >= Ar_2 ] (Comp: 9*Ar_0 + 6*Ar_1, Cost: 1) f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4)) [ Ar_0 >= Ar_3 + 1 ] (Comp: 3, Cost: 1) f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_3)) [ Ar_3 >= Ar_0 ] (Comp: 39*Ar_0 + 39*Ar_1, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 - 1)) [ Ar_4 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 88*Ar_0 + 85*Ar_1 + 10 Time: 0.145 sec (SMT: 0.112 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f0 0: f0 -> f1 : [], cost: 1 1: f1 -> f1 : B'=1+B, [ A>=1+B ], cost: 1 2: f1 -> f2 : C'=B, [ B>=A ], cost: 1 3: f2 -> f2 : C'=-1+C, [ C>=1 ], cost: 1 4: f2 -> f3 : D'=C, [ 0>=C ], cost: 1 5: f3 -> f3 : D'=1+D, [ A>=1+D ], cost: 1 6: f3 -> f4 : E'=D, [ D>=A ], cost: 1 7: f4 -> f4 : E'=-1+E, [ E>=1 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: f0 -> f1 : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f1 -> f1 : B'=1+B, [ A>=1+B ], cost: 1 Accelerated rule 1 with metering function A-B, yielding the new rule 8. Removing the simple loops: 1. Accelerating simple loops of location 2. Accelerating the following rules: 3: f2 -> f2 : C'=-1+C, [ C>=1 ], cost: 1 Accelerated rule 3 with metering function C, yielding the new rule 9. Removing the simple loops: 3. Accelerating simple loops of location 3. Accelerating the following rules: 5: f3 -> f3 : D'=1+D, [ A>=1+D ], cost: 1 Accelerated rule 5 with metering function -D+A, yielding the new rule 10. Removing the simple loops: 5. Accelerating simple loops of location 4. Accelerating the following rules: 7: f4 -> f4 : E'=-1+E, [ E>=1 ], cost: 1 Accelerated rule 7 with metering function E, yielding the new rule 11. Removing the simple loops: 7. Accelerated all simple loops using metering functions (where possible): Start location: f0 0: f0 -> f1 : [], cost: 1 2: f1 -> f2 : C'=B, [ B>=A ], cost: 1 8: f1 -> f1 : B'=A, [ A>=1+B ], cost: A-B 4: f2 -> f3 : D'=C, [ 0>=C ], cost: 1 9: f2 -> f2 : C'=0, [ C>=1 ], cost: C 6: f3 -> f4 : E'=D, [ D>=A ], cost: 1 10: f3 -> f3 : D'=A, [ A>=1+D ], cost: -D+A 11: f4 -> f4 : E'=0, [ E>=1 ], cost: E Chained accelerated rules (with incoming rules): Start location: f0 0: f0 -> f1 : [], cost: 1 12: f0 -> f1 : B'=A, [ A>=1+B ], cost: 1+A-B 2: f1 -> f2 : C'=B, [ B>=A ], cost: 1 13: f1 -> f2 : C'=0, [ B>=A && B>=1 ], cost: 1+B 4: f2 -> f3 : D'=C, [ 0>=C ], cost: 1 14: f2 -> f3 : D'=A, [ 0>=C && A>=1+C ], cost: 1-C+A 6: f3 -> f4 : E'=D, [ D>=A ], cost: 1 15: f3 -> f4 : E'=0, [ D>=A && D>=1 ], cost: 1+D Removed unreachable locations (and leaf rules with constant cost): Start location: f0 0: f0 -> f1 : [], cost: 1 12: f0 -> f1 : B'=A, [ A>=1+B ], cost: 1+A-B 2: f1 -> f2 : C'=B, [ B>=A ], cost: 1 13: f1 -> f2 : C'=0, [ B>=A && B>=1 ], cost: 1+B 4: f2 -> f3 : D'=C, [ 0>=C ], cost: 1 14: f2 -> f3 : D'=A, [ 0>=C && A>=1+C ], cost: 1-C+A 15: f3 -> f4 : E'=0, [ D>=A && D>=1 ], cost: 1+D Eliminated locations (on tree-shaped paths): Start location: f0 16: f0 -> f2 : C'=B, [ B>=A ], cost: 2 17: f0 -> f2 : C'=0, [ B>=A && B>=1 ], cost: 2+B 18: f0 -> f2 : B'=A, C'=A, [ A>=1+B ], cost: 2+A-B 19: f0 -> f2 : B'=A, C'=0, [ A>=1+B && A>=1 ], cost: 2+2*A-B 20: f2 -> f4 : D'=A, E'=0, [ 0>=C && A>=1+C && A>=1 ], cost: 2-C+2*A Eliminated locations (on tree-shaped paths): Start location: f0 21: f0 -> f4 : C'=0, D'=A, E'=0, [ B>=A && B>=1 && A>=1 ], cost: 4+2*A+B 22: f0 -> f4 : B'=A, C'=0, D'=A, E'=0, [ A>=1+B && A>=1 ], cost: 4+4*A-B 23: f0 -> [9] : [ A>=1+B ], cost: 2+A-B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f0 21: f0 -> f4 : C'=0, D'=A, E'=0, [ B>=A && B>=1 && A>=1 ], cost: 4+2*A+B 22: f0 -> f4 : B'=A, C'=0, D'=A, E'=0, [ A>=1+B && A>=1 ], cost: 4+4*A-B 23: f0 -> [9] : [ A>=1+B ], cost: 2+A-B Computing asymptotic complexity for rule 21 Solved the limit problem by the following transformations: Created initial limit problem: 4+2*A+B (+), A (+/+!), B (+/+!), 1-A+B (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n,B==n} resulting limit problem: [solved] Solution: A / n B / n Resulting cost 4+3*n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 4+3*n Rule cost: 4+2*A+B Rule guard: [ B>=A && B>=1 && A>=1 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)