/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, 1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 28 ms] (2) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f0(A, B, C) -> Com_1(f8(0, 10, 0)) :|: TRUE f8(A, B, C) -> Com_1(f8(A + 2, B, C + 1)) :|: B >= C + 1 f8(A, B, C) -> Com_1(f6(A, B, C)) :|: 2 * B >= A + 1 && C >= B f8(A, B, C) -> Com_1(f6(A, B, C)) :|: A >= 2 * B && C >= B The start-symbols are:[f0_3] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 13) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f8(0, 10, 0)) (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 2, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1, Ar_2)) [ 2*Ar_1 >= Ar_0 + 1 /\ Ar_2 >= Ar_1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 2*Ar_1 /\ Ar_2 >= Ar_1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f8(0, 10, 0)) (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 2, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1, Ar_2)) [ 2*Ar_1 >= Ar_0 + 1 /\ Ar_2 >= Ar_1 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 2*Ar_1 /\ Ar_2 >= Ar_1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f0) = 1 Pol(f8) = 1 Pol(f6) = 0 Pol(koat_start) = 1 orients all transitions weakly and the transitions f8(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1, Ar_2)) [ 2*Ar_1 >= Ar_0 + 1 /\ Ar_2 >= Ar_1 ] f8(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 2*Ar_1 /\ Ar_2 >= Ar_1 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f8(0, 10, 0)) (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 2, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_2 + 1 ] (Comp: 1, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1, Ar_2)) [ 2*Ar_1 >= Ar_0 + 1 /\ Ar_2 >= Ar_1 ] (Comp: 1, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 2*Ar_1 /\ Ar_2 >= Ar_1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f0) = 10 Pol(f8) = V_2 - V_3 Pol(f6) = V_2 - V_3 Pol(koat_start) = 10 orients all transitions weakly and the transition f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 2, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_2 + 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f8(0, 10, 0)) (Comp: 10, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f8(Ar_0 + 2, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_2 + 1 ] (Comp: 1, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1, Ar_2)) [ 2*Ar_1 >= Ar_0 + 1 /\ Ar_2 >= Ar_1 ] (Comp: 1, Cost: 1) f8(Ar_0, Ar_1, Ar_2) -> Com_1(f6(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 2*Ar_1 /\ Ar_2 >= Ar_1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 13 Time: 0.048 sec (SMT: 0.040 sec) ---------------------------------------- (2) BOUNDS(1, 1)