/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, INF). (0) CpxIntTrs (1) Loat Proof [FINISHED, 312 ms] (2) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f0(A, B, C, D) -> Com_1(f1(A, B, C, D)) :|: TRUE f1(A, B, C, D) -> Com_1(f1(A + B, B + C, C + D, D - 1)) :|: A >= 1 f1(A, B, C, D) -> Com_1(f1(A - 1, B, C, D)) :|: A >= 1 The start-symbols are:[f0_4] ---------------------------------------- (1) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f0 0: f0 -> f1 : [], cost: 1 1: f1 -> f1 : A'=A+B, B'=C+B, C'=C+D, D'=-1+D, [ A>=1 ], cost: 1 2: f1 -> f1 : A'=-1+A, [ A>=1 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: f0 -> f1 : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f1 -> f1 : A'=A+B, B'=C+B, C'=C+D, D'=-1+D, [ A>=1 ], cost: 1 2: f1 -> f1 : A'=-1+A, [ A>=1 ], cost: 1 Found no metering function for rule 1. Accelerated rule 2 with metering function A, yielding the new rule 3. Removing the simple loops: 2. Accelerated all simple loops using metering functions (where possible): Start location: f0 0: f0 -> f1 : [], cost: 1 1: f1 -> f1 : A'=A+B, B'=C+B, C'=C+D, D'=-1+D, [ A>=1 ], cost: 1 3: f1 -> f1 : A'=0, [ A>=1 ], cost: A Chained accelerated rules (with incoming rules): Start location: f0 0: f0 -> f1 : [], cost: 1 4: f0 -> f1 : A'=A+B, B'=C+B, C'=C+D, D'=-1+D, [ A>=1 ], cost: 2 5: f0 -> f1 : A'=0, [ A>=1 ], cost: 1+A Removed unreachable locations (and leaf rules with constant cost): Start location: f0 5: f0 -> f1 : A'=0, [ A>=1 ], cost: 1+A ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f0 5: f0 -> f1 : A'=0, [ A>=1 ], cost: 1+A Computing asymptotic complexity for rule 5 Solved the limit problem by the following transformations: Created initial limit problem: A (+/+!), 1+A (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n} resulting limit problem: [solved] Solution: A / n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+A Rule guard: [ A>=1 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (2) BOUNDS(n^1, INF)