/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^2, n^2). (0) CpxIntTrs (1) Koat Proof [FINISHED, 43 ms] (2) BOUNDS(1, n^2) (3) Loat Proof [FINISHED, 349 ms] (4) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f1(A, B) -> Com_1(f3(A, A)) :|: A >= 1 f3(A, B) -> Com_1(f3(A, B - 1)) :|: B >= 1 f3(A, B) -> Com_1(f3(A - 1, A - 1)) :|: 0 >= B && A >= 2 The start-symbols are:[f1_2] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, Ar_0^2 + 2*Ar_0 + 1) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f1(Ar_0, Ar_1) -> Com_1(f3(Ar_0, Ar_0)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1) -> Com_1(f3(Ar_0, Ar_1 - 1)) [ Ar_1 >= 1 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1) -> Com_1(f3(Ar_0 - 1, Ar_0 - 1)) [ 0 >= Ar_1 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(f1(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) f1(Ar_0, Ar_1) -> Com_1(f3(Ar_0, Ar_0)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1) -> Com_1(f3(Ar_0, Ar_1 - 1)) [ Ar_1 >= 1 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1) -> Com_1(f3(Ar_0 - 1, Ar_0 - 1)) [ 0 >= Ar_1 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(f1(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f1) = V_1 Pol(f3) = V_1 Pol(koat_start) = V_1 orients all transitions weakly and the transition f3(Ar_0, Ar_1) -> Com_1(f3(Ar_0 - 1, Ar_0 - 1)) [ 0 >= Ar_1 /\ Ar_0 >= 2 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) f1(Ar_0, Ar_1) -> Com_1(f3(Ar_0, Ar_0)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1) -> Com_1(f3(Ar_0, Ar_1 - 1)) [ Ar_1 >= 1 ] (Comp: Ar_0, Cost: 1) f3(Ar_0, Ar_1) -> Com_1(f3(Ar_0 - 1, Ar_0 - 1)) [ 0 >= Ar_1 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(f1(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f3) = V_2 and size complexities S("koat_start(Ar_0, Ar_1) -> Com_1(f1(Ar_0, Ar_1)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1) -> Com_1(f1(Ar_0, Ar_1)) [ 0 <= 0 ]", 0-1) = Ar_1 S("f3(Ar_0, Ar_1) -> Com_1(f3(Ar_0 - 1, Ar_0 - 1)) [ 0 >= Ar_1 /\\ Ar_0 >= 2 ]", 0-0) = Ar_0 S("f3(Ar_0, Ar_1) -> Com_1(f3(Ar_0 - 1, Ar_0 - 1)) [ 0 >= Ar_1 /\\ Ar_0 >= 2 ]", 0-1) = Ar_0 S("f3(Ar_0, Ar_1) -> Com_1(f3(Ar_0, Ar_1 - 1)) [ Ar_1 >= 1 ]", 0-0) = Ar_0 S("f3(Ar_0, Ar_1) -> Com_1(f3(Ar_0, Ar_1 - 1)) [ Ar_1 >= 1 ]", 0-1) = Ar_0 S("f1(Ar_0, Ar_1) -> Com_1(f3(Ar_0, Ar_0)) [ Ar_0 >= 1 ]", 0-0) = Ar_0 S("f1(Ar_0, Ar_1) -> Com_1(f3(Ar_0, Ar_0)) [ Ar_0 >= 1 ]", 0-1) = Ar_0 orients the transitions f3(Ar_0, Ar_1) -> Com_1(f3(Ar_0, Ar_1 - 1)) [ Ar_1 >= 1 ] weakly and the transition f3(Ar_0, Ar_1) -> Com_1(f3(Ar_0, Ar_1 - 1)) [ Ar_1 >= 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) f1(Ar_0, Ar_1) -> Com_1(f3(Ar_0, Ar_0)) [ Ar_0 >= 1 ] (Comp: Ar_0^2 + Ar_0, Cost: 1) f3(Ar_0, Ar_1) -> Com_1(f3(Ar_0, Ar_1 - 1)) [ Ar_1 >= 1 ] (Comp: Ar_0, Cost: 1) f3(Ar_0, Ar_1) -> Com_1(f3(Ar_0 - 1, Ar_0 - 1)) [ 0 >= Ar_1 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(f1(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound Ar_0^2 + 2*Ar_0 + 1 Time: 0.059 sec (SMT: 0.051 sec) ---------------------------------------- (2) BOUNDS(1, n^2) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f1 0: f1 -> f3 : B'=A, [ A>=1 ], cost: 1 1: f3 -> f3 : B'=-1+B, [ B>=1 ], cost: 1 2: f3 -> f3 : A'=-1+A, B'=-1+A, [ 0>=B && A>=2 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: f1 -> f3 : B'=A, [ A>=1 ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f3 -> f3 : B'=-1+B, [ B>=1 ], cost: 1 2: f3 -> f3 : A'=-1+A, B'=-1+A, [ 0>=B && A>=2 ], cost: 1 Accelerated rule 1 with metering function B, yielding the new rule 3. Found no metering function for rule 2. Nested simple loops 2 (outer loop) and 3 (inner loop) with metering function -1+A, resulting in the new rules: 4, 5. Removing the simple loops: 1 2. Accelerated all simple loops using metering functions (where possible): Start location: f1 0: f1 -> f3 : B'=A, [ A>=1 ], cost: 1 3: f3 -> f3 : B'=0, [ B>=1 ], cost: B 4: f3 -> f3 : A'=1, B'=1, [ B>=1 && A>=2 ], cost: -3/2-1/2*(-1+A)^2+(-1+A)*A+3/2*A 5: f3 -> f3 : A'=1, B'=1, [ 0>=B && -1+A>=2 ], cost: -2+(-1+A)*(-2+A)+3/2*A-1/2*(-2+A)^2 Chained accelerated rules (with incoming rules): Start location: f1 0: f1 -> f3 : B'=A, [ A>=1 ], cost: 1 6: f1 -> f3 : B'=0, [ A>=1 ], cost: 1+A 7: f1 -> f3 : A'=1, B'=1, [ A>=2 ], cost: -1/2-1/2*(-1+A)^2+(-1+A)*A+3/2*A Removed unreachable locations (and leaf rules with constant cost): Start location: f1 6: f1 -> f3 : B'=0, [ A>=1 ], cost: 1+A 7: f1 -> f3 : A'=1, B'=1, [ A>=2 ], cost: -1/2-1/2*(-1+A)^2+(-1+A)*A+3/2*A ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f1 6: f1 -> f3 : B'=0, [ A>=1 ], cost: 1+A 7: f1 -> f3 : A'=1, B'=1, [ A>=2 ], cost: -1/2-1/2*(-1+A)^2+(-1+A)*A+3/2*A Computing asymptotic complexity for rule 6 Solved the limit problem by the following transformations: Created initial limit problem: A (+/+!), 1+A (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n} resulting limit problem: [solved] Solution: A / n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Computing asymptotic complexity for rule 7 Solved the limit problem by the following transformations: Created initial limit problem: -1+3/2*A+1/2*A^2 (+), -1+A (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n} resulting limit problem: [solved] Solution: A / n Resulting cost -1+1/2*n^2+3/2*n has complexity: Poly(n^2) Found new complexity Poly(n^2). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^2) Cpx degree: 2 Solved cost: -1+1/2*n^2+3/2*n Rule cost: -1/2-1/2*(-1+A)^2+(-1+A)*A+3/2*A Rule guard: [ A>=2 ] WORST_CASE(Omega(n^2),?) ---------------------------------------- (4) BOUNDS(n^2, INF)