/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(INF, INF). (0) CpxIntTrs (1) Loat Proof [FINISHED, 335 ms] (2) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f2(A, B, C) -> Com_1(f2(A + 1, B, C)) :|: TRUE f3(A, B, C) -> Com_1(f3(A, B - 1, C)) :|: B >= 1 f5(A, B, C) -> Com_1(f5(A, B, 1)) :|: TRUE f0(A, B, C) -> Com_1(f2(0, B, C)) :|: C >= 1 f0(A, B, C) -> Com_1(f3(0, B, C)) :|: 0 >= C f3(A, B, C) -> Com_1(f5(0, B, C)) :|: 0 >= B The start-symbols are:[f0_3] ---------------------------------------- (1) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f0 0: f2 -> f2 : A'=1+A, [], cost: 1 1: f3 -> f3 : B'=-1+B, [ B>=1 ], cost: 1 5: f3 -> f5 : A'=0, [ 0>=B ], cost: 1 2: f5 -> f5 : C'=1, [], cost: 1 3: f0 -> f2 : A'=0, [ C>=1 ], cost: 1 4: f0 -> f3 : A'=0, [ 0>=C ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 3: f0 -> f2 : A'=0, [ C>=1 ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: f2 -> f2 : A'=1+A, [], cost: 1 Accelerated rule 0 with NONTERM, yielding the new rule 6. Removing the simple loops: 0. Accelerating simple loops of location 1. Accelerating the following rules: 1: f3 -> f3 : B'=-1+B, [ B>=1 ], cost: 1 Accelerated rule 1 with metering function B, yielding the new rule 7. Removing the simple loops: 1. Accelerating simple loops of location 2. Accelerating the following rules: 2: f5 -> f5 : C'=1, [], cost: 1 Accelerated rule 2 with NONTERM, yielding the new rule 8. Removing the simple loops: 2. Accelerated all simple loops using metering functions (where possible): Start location: f0 6: f2 -> [4] : [], cost: NONTERM 5: f3 -> f5 : A'=0, [ 0>=B ], cost: 1 7: f3 -> f3 : B'=0, [ B>=1 ], cost: B 8: f5 -> [6] : [], cost: NONTERM 3: f0 -> f2 : A'=0, [ C>=1 ], cost: 1 4: f0 -> f3 : A'=0, [ 0>=C ], cost: 1 Chained accelerated rules (with incoming rules): Start location: f0 5: f3 -> f5 : A'=0, [ 0>=B ], cost: 1 11: f3 -> [6] : A'=0, [ 0>=B ], cost: NONTERM 3: f0 -> f2 : A'=0, [ C>=1 ], cost: 1 4: f0 -> f3 : A'=0, [ 0>=C ], cost: 1 9: f0 -> [4] : A'=0, [ C>=1 ], cost: NONTERM 10: f0 -> f3 : A'=0, B'=0, [ 0>=C && B>=1 ], cost: 1+B Removed unreachable locations (and leaf rules with constant cost): Start location: f0 11: f3 -> [6] : A'=0, [ 0>=B ], cost: NONTERM 4: f0 -> f3 : A'=0, [ 0>=C ], cost: 1 9: f0 -> [4] : A'=0, [ C>=1 ], cost: NONTERM 10: f0 -> f3 : A'=0, B'=0, [ 0>=C && B>=1 ], cost: 1+B Eliminated locations (on tree-shaped paths): Start location: f0 9: f0 -> [4] : A'=0, [ C>=1 ], cost: NONTERM 12: f0 -> [6] : A'=0, [ 0>=C && 0>=B ], cost: NONTERM 13: f0 -> [6] : A'=0, B'=0, [ 0>=C && B>=1 ], cost: NONTERM ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f0 9: f0 -> [4] : A'=0, [ C>=1 ], cost: NONTERM 12: f0 -> [6] : A'=0, [ 0>=C && 0>=B ], cost: NONTERM 13: f0 -> [6] : A'=0, B'=0, [ 0>=C && B>=1 ], cost: NONTERM Computing asymptotic complexity for rule 9 Guard is satisfiable, yielding nontermination Resulting cost NONTERM has complexity: Nonterm Found new complexity Nonterm. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Nonterm Cpx degree: Nonterm Solved cost: NONTERM Rule cost: NONTERM Rule guard: [ C>=1 ] NO ---------------------------------------- (2) BOUNDS(INF, INF)