/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^2, n^2). (0) CpxIntTrs (1) Koat Proof [FINISHED, 10 ms] (2) BOUNDS(1, n^2) (3) Loat Proof [FINISHED, 429 ms] (4) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f4(A, B, C) -> Com_1(f4(A, B + 1, C)) :|: A >= B + 1 f4(A, B, C) -> Com_1(f4(A + 1, 0, C)) :|: C >= A + 2 && B >= A f0(A, B, C) -> Com_1(f4(0, 0, C)) :|: C >= 1 The start-symbols are:[f0_3] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, Ar_2^2 + Ar_2 + 1) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0 + 1, 0, Ar_2)) [ Ar_2 >= Ar_0 + 2 /\ Ar_1 >= Ar_0 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f4(0, 0, Ar_2)) [ Ar_2 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0 + 1, 0, Ar_2)) [ Ar_2 >= Ar_0 + 2 /\ Ar_1 >= Ar_0 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f4(0, 0, Ar_2)) [ Ar_2 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f4) = -V_1 + V_3 Pol(f0) = V_3 Pol(koat_start) = V_3 orients all transitions weakly and the transition f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0 + 1, 0, Ar_2)) [ Ar_2 >= Ar_0 + 2 /\ Ar_1 >= Ar_0 ] strictly and produces the following problem: 3: T: (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_0 >= Ar_1 + 1 ] (Comp: Ar_2, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0 + 1, 0, Ar_2)) [ Ar_2 >= Ar_0 + 2 /\ Ar_1 >= Ar_0 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f4(0, 0, Ar_2)) [ Ar_2 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f4) = V_1 - V_2 and size complexities S("koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ]", 0-1) = Ar_1 S("koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ]", 0-2) = Ar_2 S("f0(Ar_0, Ar_1, Ar_2) -> Com_1(f4(0, 0, Ar_2)) [ Ar_2 >= 1 ]", 0-0) = 0 S("f0(Ar_0, Ar_1, Ar_2) -> Com_1(f4(0, 0, Ar_2)) [ Ar_2 >= 1 ]", 0-1) = 0 S("f0(Ar_0, Ar_1, Ar_2) -> Com_1(f4(0, 0, Ar_2)) [ Ar_2 >= 1 ]", 0-2) = Ar_2 S("f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0 + 1, 0, Ar_2)) [ Ar_2 >= Ar_0 + 2 /\\ Ar_1 >= Ar_0 ]", 0-0) = Ar_2 S("f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0 + 1, 0, Ar_2)) [ Ar_2 >= Ar_0 + 2 /\\ Ar_1 >= Ar_0 ]", 0-1) = 0 S("f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0 + 1, 0, Ar_2)) [ Ar_2 >= Ar_0 + 2 /\\ Ar_1 >= Ar_0 ]", 0-2) = Ar_2 S("f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_0 >= Ar_1 + 1 ]", 0-0) = Ar_2 S("f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_0 >= Ar_1 + 1 ]", 0-1) = ? S("f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_0 >= Ar_1 + 1 ]", 0-2) = Ar_2 orients the transitions f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_0 >= Ar_1 + 1 ] weakly and the transition f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_0 >= Ar_1 + 1 ] strictly and produces the following problem: 4: T: (Comp: Ar_2^2, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1 + 1, Ar_2)) [ Ar_0 >= Ar_1 + 1 ] (Comp: Ar_2, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0 + 1, 0, Ar_2)) [ Ar_2 >= Ar_0 + 2 /\ Ar_1 >= Ar_0 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f4(0, 0, Ar_2)) [ Ar_2 >= 1 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound Ar_2^2 + Ar_2 + 1 Time: 0.065 sec (SMT: 0.057 sec) ---------------------------------------- (2) BOUNDS(1, n^2) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f0 0: f4 -> f4 : B'=1+B, [ A>=1+B ], cost: 1 1: f4 -> f4 : A'=1+A, B'=0, [ C>=2+A && B>=A ], cost: 1 2: f0 -> f4 : A'=0, B'=0, [ C>=1 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 2: f0 -> f4 : A'=0, B'=0, [ C>=1 ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: f4 -> f4 : B'=1+B, [ A>=1+B ], cost: 1 1: f4 -> f4 : A'=1+A, B'=0, [ C>=2+A && B>=A ], cost: 1 Accelerated rule 0 with metering function A-B, yielding the new rule 3. Found no metering function for rule 1. Nested simple loops 1 (outer loop) and 3 (inner loop) with metering function -1+C-A, resulting in the new rules: 4, 5. Removing the simple loops: 0 1. Accelerated all simple loops using metering functions (where possible): Start location: f0 3: f4 -> f4 : B'=A, [ A>=1+B ], cost: A-B 4: f4 -> f4 : A'=-1+C, B'=-1+C, [ C>=2+A && B>=A && 1+A>=1 ], cost: -3/2+1/2*(-1+C-A)^2+3/2*C-3/2*A+A*(-1+C-A) 5: f4 -> f4 : A'=-1+C, B'=-1+C, [ A>=1+B && C>=2+A && 1+A>=1 ], cost: -3/2+1/2*(-1+C-A)^2+3/2*C-1/2*A-B+A*(-1+C-A) 2: f0 -> f4 : A'=0, B'=0, [ C>=1 ], cost: 1 Chained accelerated rules (with incoming rules): Start location: f0 2: f0 -> f4 : A'=0, B'=0, [ C>=1 ], cost: 1 6: f0 -> f4 : A'=-1+C, B'=-1+C, [ C>=2 ], cost: -1/2+3/2*C+1/2*(-1+C)^2 Removed unreachable locations (and leaf rules with constant cost): Start location: f0 6: f0 -> f4 : A'=-1+C, B'=-1+C, [ C>=2 ], cost: -1/2+3/2*C+1/2*(-1+C)^2 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f0 6: f0 -> f4 : A'=-1+C, B'=-1+C, [ C>=2 ], cost: -1/2+3/2*C+1/2*(-1+C)^2 Computing asymptotic complexity for rule 6 Solved the limit problem by the following transformations: Created initial limit problem: 1/2*C+1/2*C^2 (+), -1+C (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {C==n} resulting limit problem: [solved] Solution: C / n Resulting cost 1/2*n+1/2*n^2 has complexity: Poly(n^2) Found new complexity Poly(n^2). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^2) Cpx degree: 2 Solved cost: 1/2*n+1/2*n^2 Rule cost: -1/2+3/2*C+1/2*(-1+C)^2 Rule guard: [ C>=2 ] WORST_CASE(Omega(n^2),?) ---------------------------------------- (4) BOUNDS(n^2, INF)